Publications by authors named "Henry H Y Tong"

and are two subtypes of (Fo), a pathogenic filamentous fungus. Phenamacril (PHA), a -specific fungicide that targets myosin I, exhibits significant hyphal growth inhibition in but shows weak resistance in , despite only two amino acid differences in the PHA-binding pocket of myosin I. In this study, we aim to elucidate the molecular basis for the differential sensitivity of myosin I variants (FoMyoI and FoMyoI) to phenamacril through computational methods and biochemical validation.

View Article and Find Full Text PDF
Article Synopsis
  • Predicting immunotherapy outcomes for cancer patients is difficult based on their initial health status.
  • The authors present a new method called scCURE, which uses single-cell RNA sequencing to differentiate between unchanged and changed cells during treatment.
  • They also outline how to create predictions for immunotherapy results using either single-cell or bulk RNA sequencing data, focusing on the unchanged cells identified by the scCURE method.
View Article and Find Full Text PDF

The simultaneous use of two or more drugs in clinical treatment may raise the risk of a drug-drug interaction (DDI). DDI prediction is very important to avoid adverse drug events in combination therapy. Recently, deep learning methods have been applied successfully to DDI prediction and improved prediction performance.

View Article and Find Full Text PDF

Depression represents a significant global public health challenge, and marital status has been recognized as a potential risk factor. However, previous investigations of this association have primarily focused on Western samples with substantial heterogeneity. Our study aimed to examine the association between marital status and depressive symptoms across countries with diverse cultural backgrounds using a large-scale, two-stage, cross-country analysis.

View Article and Find Full Text PDF

Mycobacterial membrane protein Large 3 (MmpL3) of Mycobacterium tuberculosis (Mtb) is crucial for the translocation of trehalose monomycolate (TMM) across the inner bacterial cell membrane, making it a promising target for anti-tuberculosis (TB) drug development. While several structural, microbiological, and in vitro studies have provided significant insights, the precise mechanisms underlying TMM transport by MmpL3 and its inhibition remain incompletely understood at the atomic level. In this study, molecular dynamic (MD) simulations for the apo form and seven inhibitor-bound forms of Mtb MmpL3 were carried out to obtain a thorough comprehension of the protein's dynamics and function.

View Article and Find Full Text PDF

Leucine-rich repeat kinase 2 (LRRK2) has been reported to be associated with familial and idiopathic Parkinson's disease (PD) risk and is a promising target for drug discovery against PD. To identify novel and effective LRRK2 inhibitors, an ensemble virtual screening strategy by combining fingerprint similarity, complex-based pharmacophore and structure-based molecular docking was proposed and applied. Using this strategy, we finally selected 25 compounds from ∼1.

View Article and Find Full Text PDF
Article Synopsis
  • Puberty is a time when some kids can start feeling really sad, and this study looked at how changes in the brain during this time can relate to major depression in young people.
  • Researchers used special brain scans to compare kids with depression to healthy kids and found some important differences in their brain's white matter.
  • They also created a model that could help identify depression in kids based on brain scans and other information, showing that changes in brain structure can connect to how sad someone feels.
View Article and Find Full Text PDF

Recent advances in tumor molecular subtyping have revolutionized precision oncology, offering novel avenues for patient-specific treatment strategies. However, a comprehensive and independent comparison of these subtyping methodologies remains unexplored. This study introduces 'Themis' (Tumor HEterogeneity analysis on Molecular subtypIng System), an evaluation platform that encapsulates a few representative tumor molecular subtyping methods, including Stemness, Anoikis, Metabolism, and pathway-based classifications, utilizing 38 test datasets curated from The Cancer Genome Atlas (TCGA) and significant studies.

View Article and Find Full Text PDF

The introduction of AlphaFold2 (AF2) has sparked significant enthusiasm and generated extensive discussion within the scientific community, particularly among drug discovery researchers. Although previous studies have addressed the performance of AF2 structures in virtual screening (VS), a more comprehensive investigation is still necessary considering the paramount importance of structural accuracy in drug design. In this study, we evaluate the performance of AF2 structures in VS across three common drug discovery scenarios: targets with , , and AF2 structures; targets with only and AF2 structures; and targets exclusively with AF2 structures.

View Article and Find Full Text PDF

Utilizing α,β-unsaturated carbonyl group as Michael acceptors to react with thiols represents a successful strategy for developing KRAS inhibitors. Despite this, the precise reaction mechanism between KRAS and covalent inhibitors remains a subject of debate, primarily due to the absence of an appropriate residue capable of deprotonating the cysteine thiol as a base. To uncover this reaction mechanism, we first discussed the chemical reaction mechanism in solvent conditions via density functional theory (DFT) calculation.

View Article and Find Full Text PDF

The production of penicillin-binding protein 2a (PBP2a), a cell wall synthesis protein, is primarily responsible for the high-level resistance observed in methicillin-resistant (MRSA). PBP2a exhibits a significantly reduced affinity for most β-lactam antibiotics owing to its tightly closed active site. Quinazolinones (QNE), a novel class of non-β-lactam antibiotics, could initiate the allosteric regulation of PBP2a, resulting in the opening of the initially closed active pocket.

View Article and Find Full Text PDF

Clinical metabolomics is growing as an essential tool for precision medicine. However, classical machine learning algorithms struggle to comprehensively encode and analyze the metabolomics data due to their high dimensionality and complex intercorrelations. This article introduces a new method called MetDIT, designed to analyze intricate metabolomics data effectively using deep convolutional neural networks (CNN).

View Article and Find Full Text PDF

Drug discovery is a complex and iterative process, making it ideal for using artificial intelligence (AI). This paper uses a bibliometric approach to reveal AI's trend and underlying structure in drug discovery (AIDD). A total of 4310 journal articles and reviews indexed in Scopus were analyzed, revealing that AIDD has been rapidly growing over the past two decades, with a significant increase after 2017.

View Article and Find Full Text PDF

A deep understanding of immunotherapy response/resistance mechanisms and a highly reliable therapy response prediction are vital for cancer treatment. Here, we developed scCURE (single-cell RNA sequencing [scRNA-seq] data-based Changed and Unchanged cell Recognition during immunotherapy). Based on Gaussian mixture modeling, Kullback-Leibler (KL) divergence, and mutual nearest-neighbors criteria, scCURE can faithfully discriminate between cells affected or unaffected by immunotherapy intervention.

View Article and Find Full Text PDF

Methicillin-resistant (MRSA) acquires high-level resistance against β-lactam antibiotics by expressing penicillin-binding protein 2a (PBP2a). PBP2a is a cell wall-synthesizing protein whose closed active site exhibits a reduced binding affinity toward β-lactam antibiotics. Ceftaroline (CFT), a fifth-generation cephalosporin, can effectively inhibit the PBP2a activity by binding to an allosteric site to trigger the active site opening, allowing a second CFT to access the active site.

View Article and Find Full Text PDF

Purpose: While observational studies have identified obesity as a potential risk factor for gastric cancer, the causality remains uncertain. This study aimed to evaluate the causal relationship between obesity and gastric cancer and identify the shared molecular signatures linking obesity to gastric cancer.

Methods: A two-sample Mendelian randomization (MR) analysis was conducted using the GWAS data of body fat percentage (exposure, n = 331,117) and gastric cancer (outcome, n = 202,308).

View Article and Find Full Text PDF

The accurate prediction of the effect of amino acid mutations for protein-protein interactions (PPI $\Delta \Delta G$) is a crucial task in protein engineering, as it provides insight into the relevant biological processes underpinning protein binding and provides a basis for further drug discovery. In this study, we propose MpbPPI, a novel multi-task pre-training-based geometric equivariance-preserving framework to predict PPI  $\Delta \Delta G$. Pre-training on a strictly screened pre-training dataset is employed to address the scarcity of protein-protein complex structures annotated with PPI $\Delta \Delta G$ values.

View Article and Find Full Text PDF

Multidrug-resistant tuberculosis (MDR-TB) continues to spread worldwide and remains one of the leading causes of death among infectious diseases. The enoyl-acyl carrier protein reductase (InhA) belongs to FAS-II family and is essential for the formation of the Mycobacterium tuberculosis cell wall. Recent years, InhA direct inhibitors have been extensively studied to overcome MDR-TB.

View Article and Find Full Text PDF

Prion diseases are a group of fatal neurodegenerative diseases caused by the misfolding and aggregation of prion protein (PrP), and the inhibition of PrP aggregation is one of the most effective therapeutic strategies. Proanthocyanidin B2 (PB2) and B3 (PB3), the effective natural antioxidants have been evaluated for the inhibition of amyloid-related protein aggregation. Since PrP has similar aggregation mechanism with other amyloid-related proteins, will PB2 and PB3 affect the aggregation of PrP? In this paper, experimental and molecular dynamics (MD) simulation methods were combined to investigate the influence of PB2 and PB3 on PrP aggregation.

View Article and Find Full Text PDF

The emergence of novel respiratory infections (e.g., COVID-19) and expeditious development of nanoparticle-based COVID-19 vaccines have recently reignited considerable interest in designing inhalable nanoparticle-based drug delivery systems as next-generation respiratory therapeutics.

View Article and Find Full Text PDF

Critical illness leads to millions of deaths worldwide each year, with a significant surge due to the COVID-19 pandemic. Patients with critical illness are frequently associated with systemic metabolic disorders and malnutrition. The idea of intervention for critically ill patients through enteral and parenteral nutrition has been paid more and more attention gradually.

View Article and Find Full Text PDF

The present study aimed to investigate how cocrystal solution-state stability may affect the polymorphic drug formation and transition during dissolution. In this work, curcumin-resorcinol (CUR-RES), curcumin-hydroquinone (CUR-HYQ) and curcumin-phloroglucinol (CUR-PHL) cocrystals were employed for dissolution studies in three buffer systems to study the effects of solvent and cocrystal thermodynamic stability. The undissolved solids were collected at designed time points and characterized by powder X-ray diffraction, differential scanning calorimetry and scanning electron microscopy.

View Article and Find Full Text PDF

Herein, we reported a new bergenin: 4-aminobenzamide (BGN-4AM) cocrystal with significantly enhanced solubility and low hygroscopicity probed from two aspects such as phase solubility diagrams and theoretical calculations. Compared with anhydrous BGN, BGN-4AM solubilities in water and different buffer solutions (pH = 1.2, 4.

View Article and Find Full Text PDF

The kinetic entrapment of molecules in an amorphous phase is a common obstacle to cocrystal screening using rapid solvent removal, especially for drugs with a moderate or high glass-forming ability (GFA). The aim of this study was to elucidate the effects of the coformer's GFA and annealing conditions on the nature of amorphous phase transformation to the cocrystal counterpart. Attempts were made to cocrystallize voriconazole (VRC) with four structural analogues, namely fumaric acid (FUM), tartaric acid (TAR), malic acid (MAL), and maleic acid (MAE).

View Article and Find Full Text PDF