The transition from a humid green Sahara to today's hyperarid conditions in northern Africa ~5.5 thousand years ago shows the dramatic environmental change to which human societies were exposed and had to adapt to. In this work, we show that in the 620,000-year environmental record from the Chew Bahir basin in the southern Ethiopian Rift, with its decadal resolution, this one thousand year long transition is particularly well documented, along with 20-80 year long droughts, recurring every ~160 years, as possible early warnings.
View Article and Find Full Text PDFDespite more than half a century of hominin fossil discoveries in eastern Africa, the regional environmental context of hominin evolution and dispersal is not well established due to the lack of continuous palaeoenvironmental records from one of the proven habitats of early human populations, particularly for the Pleistocene epoch. Here we present a 620,000-year environmental record from Chew Bahir, southern Ethiopia, which is proximal to key fossil sites. Our record documents the potential influence of different episodes of climatic variability on hominin biological and cultural transformation.
View Article and Find Full Text PDFUnderstanding eastern African paleoclimate is critical for contextualizing early human evolution, adaptation, and dispersal, yet Pleistocene climate of this region and its governing mechanisms remain poorly understood due to the lack of long, orbitally-resolved, terrestrial paleoclimate records. Here we present leaf wax hydrogen isotope records of rainfall from paleolake sediment cores from key time windows that resolve long-term trends, variations, and high-latitude effects on tropical African precipitation. Eastern African rainfall was dominantly controlled by variations in low-latitude summer insolation during most of the early and middle Pleistocene, with little evidence that glacial-interglacial cycles impacted rainfall until the late Pleistocene.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2021
In this study, we synthesize terrestrial and marine proxy records, spanning the past 620 ky, to decipher pan-African climate variability and its drivers and potential linkages to hominin evolution. We find a tight correlation between moisture availability across Africa to El Niño Southern Ocean oscillation (ENSO) variability, a manifestation of the Walker Circulation, that was most likely driven by changes in Earth's eccentricity. Our results demonstrate that low-latitude insolation was a prominent driver of pan-African climate change during the Middle to Late Pleistocene.
View Article and Find Full Text PDFFire is the most frequent disturbance in the Ericaceous Belt (ca 3000-4300 m.a.s.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
View Article and Find Full Text PDFClimatic change is widely acknowledged to have played a role in the dispersal of modern humans out of Africa, but the timing is contentious. Genetic evidence links dispersal to climatic change ~60,000 years ago, despite increasing evidence for earlier modern human presence in Asia. We report a deep seismic and near-continuous core record of the last 150,000 years from Lake Tana, Ethiopia, close to early modern human fossil sites and to postulated dispersal routes.
View Article and Find Full Text PDFThe Younger Dryas Stadial (YDS) was an episode of northern hemispheric cooling which occurred within the Last Glacial Interglacial Transition (LGIT). A major driver for the YDS climate was a weakening of the Atlantic Meridional Overturning Circulation (AMOC). It has been inferred that the AMOC began to strengthen mid-YDS, producing a bipartite structure of the YDS in records from continental Europe.
View Article and Find Full Text PDFRadiocarbon ((14)C) provides a way to date material that contains carbon with an age up to ~50,000 years and is also an important tracer of the global carbon cycle. However, the lack of a comprehensive record reflecting atmospheric (14)C prior to 12.5 thousand years before the present (kyr B.
View Article and Find Full Text PDF