Acetic acid bacteria (AAB) can selectively oxidize diols into their corresponding hydroxyacids. Notably, they can convert 1,3-propanediol (1,3-PDO) into 3-hydroxypropionic acid (3-HP), which is a promising building-block. Until now, 3-HP production with AAB is carried out in batch and using resting cells at high cell densities (up to 10 g L of cell dry weight).
View Article and Find Full Text PDFDue to concerns about the unsustainability and predictable shortage of fossil feedstocks, research efforts are currently being made to develop new processes for production of commodities using alternative feedstocks. 3-Hydroxypropionic acid (CAS 503-66-2) was recognised by the US Department of Energy as one of the most promising value-added chemicals that can be obtained from biomass. This article aims at reviewing the various strategies implemented thus far for 3-hydroxypropionic acid bioproduction.
View Article and Find Full Text PDFThis study evaluated the ability of dairy matrices, different in composition (with and without fat) and structure (liquid and gel), to enhance microorganisms survival through digestion. The viability of three dairy microorganisms Streptococcus thermophilus, Brevibacterium aurantiacum and Hafnia alvei was measured during in vitro and in vivo digestion. S.
View Article and Find Full Text PDFThe aims of this study is to compare the growth and glucose metabolism of three Lactobacillus reuteri strains (i.e. DSM 20016, DSM 17938, and ATCC 53608) which are lactic acid bacteria of interest used for diverse applications such as probiotics implying the production of biomass, or for the production of valuable chemicals (3-hydroxypropionaldehyde, 3-hydroxypropionic acid, 1,3-propanediol).
View Article and Find Full Text PDFDespite their importance as potent odors that contribute to the aroma of numerous cheeses, S-methyl thioesters formation pathways have not been fully established yet. In a first part of our work, we demonstrated that Brevibacterium antiquum and Brevibacterium aurantiacum could produce S-methyl thioesters using short-chain fatty acids or branched-chain amino acids as precursors. Then, we focused our work on L-leucine catabolism using liquid chromatography tandem mass spectrometry and gas chromatography-mass spectrometry analyses coupled with tracing experiments.
View Article and Find Full Text PDFThis study compares the colouring capacity of Brevibacterium aurantiacum (BA), Brevibacterium BL and Arthrobacter species AS in relation to deacidified media made from lactic curd (Epoisses), mixed curds (Munster) and rennet curds (Livarot or Reblochon). BA colouring capacity proved to be constant, leading to a dark orange colour, irrespective of the deacidified media. However, it gave too dark a colour for Reblochon.
View Article and Find Full Text PDFThe growth and aroma contribution of Microbacterium foliorum, Proteus vulgaris and Psychrobacter sp., some common but rarely mentioned cheese bacteria, were investigated in a cheese model deacidified by Debaryomyces hansenii during the ripening process. Our results show that these bacteria had distinct growth and cheese flavour production patterns during the ripening process.
View Article and Find Full Text PDFWith the view to investigate the presence of thiols in cheese, the use of different methods of preparation and extraction with an organomercuric compound ( p-hydroxymercuribenzoate) enabled the isolation of a new compound. The analysis of cheese extracts by gas chromatography coupled with pulse flame photometry, mass spectrometry, and olfactometry detections led to the identification of ethyl 3-mercaptopropionate in Munster and Camembert cheeses. This compound, described at low concentrations as having pleasant, fruity, grapy, rhubarb, and empyreumatic characters, has previously been reported in wine and Concord grape but was never mentioned before in cheese.
View Article and Find Full Text PDFPhenomena generating FFAs, important flavour precursors, are significant in cheese ripening. In Camembert-like cheeses, it was intended to establish the relationships between the dynamics of FFA concentrations changes and the succession of ripening microflora during ripening. Experimental Camembert-type cheeses were prepared in duplicate from pasteurised milk inoculated with Kluyveromyces lactis, Geotrichum candidum, Penicillium camemberti, and Brevibacterium aurantiacum under aseptic conditions.
View Article and Find Full Text PDFThe occurrence of styrene in food may be an important aroma defect (celluloid odour), even at very low concentrations (Miltz et al. 1980) causing consumer rejection and is therefore a problem for the food industry. We examined the biosynthetic pathway leading to styrene formation by Penicillium camemberti using labelled compounds.
View Article and Find Full Text PDFThe growth of five bacteria isolated from red-smear cheeses, Brevibacterium aurantiacum, Corynebacterium casei, Corynebacterium variabile, Microbacterium gubbeenense and Staphylococcus saprophyticus in mixed cultures with Debaryomyces hansenii on aseptic model cheese curd at 10 and 14 degrees C was investigated. At both temperatures, C. casei and Micro.
View Article and Find Full Text PDFBy its numerous properties and importance in cheese technology (production of colour, flavour, bacteriocins and resistance to salt) Brevibacterium linens is a major cheese ripening bacteria. However, the genetic approach of such biological functions has been hindered, up to now, by the lack of tools necessary to realise genetic modifications in this species. Our objective was to demonstrate that it is possible to genetically modify several strains exhibiting interesting technological properties, especially the production of sulphur compounds.
View Article and Find Full Text PDFFlavour generation in cheese is a major aspect of ripening. In order to enhance aromatic qualities it is necessary to better understand the chemical and microbiological changes. Experimental Camembert-type cheeses were prepared in duplicate from pasteurized milk inoculated with Kluyveromyces lactis, Geotrichum candidum, Penicillium camemberti and Brevibacterium linens under aseptic conditions.
View Article and Find Full Text PDFA holistic approach of a mould cheese ripening is presented. The objective was to establish relationships between the different microbiological and biochemical changes during cheese ripening. Model cheeses were prepared from pasteurized milk inoculated with Kluyveromyces lactis, Geotrichum candidum, Penicillium camemberti and Brevibacterium linens under aseptic conditions.
View Article and Find Full Text PDFTwo Brevibacterium linens strains and the cheese-ripening yeast Geotrichum candidum were compared with regard to their ability to produce volatile sulfur compounds (VSCs) from three different precursors namely L-methionine, 4-methylthio-2-oxobutyric acid (KMBA) and 4-methylthio-2-hydroxybutyric acid (HMBA). All microorganisms were able to convert these precursors to VSCs. However, although all were able to produce VSCs from L-methionine, only G.
View Article and Find Full Text PDF