Publications by authors named "Henry Dube"

Molecular photoswitches produce light-controlled changes at the nanometer scale and can therefore be used to alter the states and behavior of materials in a truly bottom-up fashion. Here an escalating photonic complexity of material property control with light is shown using a recently developed aza-diarylethene in combination with hemiindigo (HI) photoswitches. First, aza-diarylethene can be used as a photoswitch in polystyrene (PS) to reversibly inscribe relief-type 3D structures into PS.

View Article and Find Full Text PDF

Diarylethenes are a well-studied and optimized class of photoswitches with a wide range of applications, including data storage, smart materials, or photocontrolled catalysis and biological processes. Most recently, aza-diarylethenes have been developed in which carbon-carbon bond connections are replaced by carbon-nitrogen connections. This structural elaboration opens up an entire new structure and property space expanding the versatility and applicability of diarylethenes.

View Article and Find Full Text PDF

Molecular motors are central driving units for nanomachinery, and control of their directional motions is of fundamental importance for their functions. Light-driven variants use easy to provide, easy to dose, and waste-free fuel with high energy content, making them particularly interesting for applications. Typically, light-driven molecular motors work via rotations around dedicated chemical bonds where the directionality of the rotation is dictated by the steric effects of asymmetry in close vicinity to the rotation axis.

View Article and Find Full Text PDF

Molecular gearing systems are technomimetic nanoscale analogues to complex geared machinery in the macroscopic world. They are defined as systems incorporating intermeshed movable parts which perform correlated rotational motions by mechanical engagement. Only recently, new methods to actively drive molecular gearing motions instead of relying on passive thermal activation have been developed.

View Article and Find Full Text PDF

Synthetic molecular photoswitches have taken center stage as high-precision tools to introduce light-responsiveness at the smallest scales. Today they are found in all areas of applied chemistry, covering materials research, chemical biology, catalysis, or nanotechnology. For a next step of applicability truly orthogonal photoswitching is highly desirable but to date such independent addressability of different photoswitches remains highly challenging.

View Article and Find Full Text PDF

Diarylethenes belong to the most eminent photoswitches and have been studied for many decades. They are found in virtually every field of application and have become highly valuable molecular tools for instilling light-responsiveness into materials, catalysts, biological systems, or pharmacology. In this work, we present a novel and distinct type of pyrimidine-based aza-diarylethene, which undergoes a highly unusual zwitterion-forming photoreaction.

View Article and Find Full Text PDF

The use of molecular photoswitches has spread to virtually every field of pure and applied chemistry because of the extraordinary level of control they provide over the behavior of matter at the smallest scales. Photoswitches possess at least two different states with distinct structures and/or electronics and further functionalization of their core chromophore structures is needed to tailor them for a specific application. In this work we present a different concept for the generation and use of molecular photoswitches.

View Article and Find Full Text PDF

Molecular photoswitches are highly desirable in all chemistry-related areas of research. They provide effective outside control over geometric and electronic changes at the nanoscale using an easy to apply, waste-free stimulus. However, simple and effective access to such molecular tools is typically not granted, and elaborate syntheses and substitution schemes are needed in order to obtain efficient photoswitching properties.

View Article and Find Full Text PDF

Thanks to the development of novel electron acceptor materials, the power conversion efficiencies (PCE) of organic photovoltaic (OPV) devices are now approaching 20%. Further improvement of PCE is complicated by the need for a driving force to split strongly bound excitons into free charges, causing voltage losses. This review discusses recent approaches to finding efficient OPV systems with minimal driving force, combining near unity quantum efficiency (maximum short circuit currents) with optimal energy efficiency (maximum open circuit voltages).

View Article and Find Full Text PDF

Molecular photoswitching with red light is greatly desired to evade photodamage and achieve specific photoresponses. In virtually all reported cases however, only one switching direction uses red light while for the reverse switching, UV or visible light is needed. All-red-light photoswitching brings with it the clear advantage of pushing photoswitching to the limit of the low-energy spectrum, but no viable system is available currently.

View Article and Find Full Text PDF

The control of molecular motions is a central topic of molecular machine research. Molecular brakes are fundamental building blocks towards such goal as they allow deliberately decelerating specific motions after an outside stimulus is applied. Here we present azotriptycenes as structural framework for light-controlled molecular brakes.

View Article and Find Full Text PDF

Light driven synthetic molecular motors represent crucial building blocks for advanced molecular machines and their applications. A standing challenge is the development of very fast molecular motors able to perform rotations with kHz, MHz or even faster frequencies. Central to this challenge is the direct experimental evidence of directionality because analytical methods able to follow very fast motions rarely deliver precise geometrical insights.

View Article and Find Full Text PDF

Photoswitches are indispensable tools for responsive chemical nanosystems and are used today in almost all areas of the natural sciences. Hemiindigo (HI) derivatives have recently been introduced as potent photoswitches, but their full applicability has been hampered by the limited possibilities of their functionalization and structural modification. Here we report on a short and easy to diversify synthesis yielding diaryl-HIs bearing one additional aromatic residue at the central double bond.

View Article and Find Full Text PDF

The Hula-Twist (HT) photoreaction represents a fundamental photochemical pathway for bond isomerizations and is defined by the coupled motion of a double bond and an adjacent single bond. This photoreaction has been suggested as the defining motion for a plethora of light-responsive chromophores such as retinal within opsins, coumaric acid within photoactive yellow protein, or vitamin D precursors, and stilbenes in solution. However, due to the fleeting character of HT photoproducts a direct experimental observation of this coupled molecular motion was severely hampered until recently.

View Article and Find Full Text PDF

The construction of sophisticated molecular machines requires not only precise control of energy fueled motions but their integration into larger functional architectures. Macrocyclization of molecular motors is a way to harness the intrinsic directionality of their rotation and use them to actively power different processes at the nano-scale. An effective concept in this regard uses a defined fragment of the molecular motor as a revolving door within the macrocycle.

View Article and Find Full Text PDF

Diaryl-hemithioindigos (diaryl-HTIs) are derivatives of a novel class of highly functionalized indigoid chromophores. In this work a systematic study of the electronic effects on their photoswitching reveals the design principles for achieving an excellent property profile. Two key elements need to be invoked for perfect diaryl-HTI performance, first introduction of strong electron donors and second establishment of cross-conjugation.

View Article and Find Full Text PDF

A survey of heterocyclic hemithioindigo photoswitches is presented identifying a number of structural motives with outstanding property profiles. The highly sought-after combination of pronounced color change, quantitative switching in both directions, exceptional high quantum yields, and tunable high thermal stability of metastable states can be realized with 4-imidazole, 2-pyrrole, and 3-indole-based derivatives. In the former, an unusual preorganization using isomer selective chalcogen- and hydrogen bonding allows to precisely control geometry changes and tautomerism upon switching.

View Article and Find Full Text PDF

One of the major challenges for harnessing the true potential of functional nano-machinery is integrating and transmitting motion with great precision. Molecular gearing systems enable the integration of multiple motions in a correlated fashion to translate motions from one locality to another and to change their speed and direction. However, currently no powerful methods exist to implement active driving of gearing motions at the molecular scale.

View Article and Find Full Text PDF

Typical photoswitches interconvert between two different states by simple isomerization reactions, which represents a fundamental limit for applications. To expand the switching capacity usually different photoswitches have to be linked together leading to strong increase in molecular weight, diminished switching function, and less precision and selectivity of switching events. Herein we present an approach for solving this essential problem with a different photoswitching concept.

View Article and Find Full Text PDF

Molecular photoswitches that offer simultaneous precise control over geometrical and electronic changes are rare yet highly sought tools for the development of responsive nanosystems. Here we present such an advantageous combination of property control within a novel multiphotoswitch architecture. Hemithioindigo-based trioxobicyclononadiene (HTI-TOND) offers a rigid three-dimensional molecular structure that undergoes different exotic rearrangement reactions upon photochemical and thermal signaling.

View Article and Find Full Text PDF

Molecular motors transform external energy input into directional motions and offer exquisite precision for nano-scale manipulations. To make full use of molecular motor capacities, their directional motions need to be transmitted and used for powering downstream molecular events. Here we present a macrocyclic molecular motor structure able to perform repetitive molecular threading of a flexible tetraethylene glycol chain through the macrocycle.

View Article and Find Full Text PDF

Red-light responsiveness of photoswitches is a highly desired property for many important application areas such as biology or material sciences. The main approach to elicit this property uses strategic substitution of long-known photoswitch motives such as azobenzenes or diarylethenes. Only very few photoswitches possess inherent red-light absorption of their core chromophore structures.

View Article and Find Full Text PDF

Introducing responsive elements into supramolecular recognition systems offers great advantages for the control of intermolecular interactions and represents an important stepping stone towards multi-purpose and reprogrammable synthetic systems. Of particular interest is implementation of light-responsiveness because of the unique ease and precision of this signal. Here we present visible light responsive hemithioindigo-based molecular tweezers that bear a highly polar sulfoxide function as an additional recognition unit inside their binding site.

View Article and Find Full Text PDF

Deciphering the exact electronic and geometric changes of photoexcited molecules is an important task not only to understand the fundamental atomistic mechanisms but also to rationally design molecular properties and functions. Here, we present a combined experimental and theoretical study of the twisted intramolecular charge transfer (TICT) process in hemithioindigo photoswitches. Using ultrafast transient IR spectroscopy as the main analytical method, a detailed understanding of the extent and direction of charge transfer within the excited molecule is obtained.

View Article and Find Full Text PDF

Tuning the thermal behavior of light driven molecular motors is fundamentally important for their future rational design. In many molecular motors thermal ratcheting steps are comprised of helicity inversions, energetically stabilizing the initial photoproducts. In this work we investigated a series of five hemithioindigo (HTI) based molecular motors to reveal the influence of steric hindrance in close proximity to the rotation axle on this process.

View Article and Find Full Text PDF