Pioneer factors are critical for gene regulation and development because they bind chromatin and make DNA more accessible for binding by other transcription factors. The pioneer factor Grainy head (Grh) is present across metazoans and has been shown to retain a role in epithelium development in fruit flies, nematodes, and mice despite extensive divergence in both amino acid sequence and length. Here, we investigate the evolution of Grh function by comparing the effects of the fly () and worm () Grh orthologs on chromatin accessibility, gene expression, embryonic development, and viability in transgenic .
View Article and Find Full Text PDFPhenotypic evolution is often caused by variation in gene expression resulting from altered gene regulatory mechanisms. Genetic variation affecting chromatin remodeling has been identified as a potential source of variable gene expression; however, the roles of specific chromatin remodeling factors remain unclear. Here, we address this knowledge gap by examining the relationship between variation in gene expression, variation in chromatin structure, and variation in binding of the pioneer factor Grainy head between imaginal wing discs of two divergent strains of Drosophila melanogaster and their F hybrid.
View Article and Find Full Text PDFDNA double-strand breaks (DSBs) are a particularly deleterious class of DNA damage that threatens genome integrity. DSBs are repaired by three pathways: nonhomologous-end joining (NHEJ), homologous recombination (HR), and single-strand annealing (SSA). () is the ortholog of and human , and has been shown to suppress crossovers in mitotic cells and repair mitotic DNA gaps via HR.
View Article and Find Full Text PDFAging is characterized by genome instability, which contributes to cancer formation and cell lethality leading to organismal decline. The high levels of DNA double-strand breaks (DSBs) observed in old cells and premature aging syndromes are likely a primary source of genome instability, but the underlying cause of their formation is still unclear. DSBs might result from higher levels of damage or repair defects emerging with advancing age, but repair pathways in old organisms are still poorly understood.
View Article and Find Full Text PDF