The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent of a major global outbreak of respiratory tract disease known as Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 infects mainly lungs and may cause several immune-related complications, such as lymphocytopenia and cytokine storm, which are associated with the severity of the disease and predict mortality. The mechanism by which SARS-CoV-2 infection may result in immune system dysfunction is still not fully understood.
View Article and Find Full Text PDFThe COVID-19 (Coronavirus Disease 2019), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), severely affects mainly individuals with pre-existing comorbidities. Here our aim was to correlate the mTOR (mammalian/mechanistic Target of Rapamycin) and autophagy pathways with the disease severity. Through western blotting and RNA analysis, we found increased mTOR signaling and suppression of genes related to autophagy, lysosome, and vesicle fusion in Vero E6 cells infected with SARS-CoV-2 as well as in transcriptomic data mining of bronchoalveolar epithelial cells from severe COVID-19 patients.
View Article and Find Full Text PDFNat Commun
September 2022
Visceral adiposity is a risk factor for severe COVID-19, and a link between adipose tissue infection and disease progression has been proposed. Here we demonstrate that SARS-CoV-2 infects human adipose tissue and undergoes productive infection in fat cells. However, susceptibility to infection and the cellular response depends on the anatomical origin of the cells and the viral lineage.
View Article and Find Full Text PDFFront Cell Infect Microbiol
June 2022
Biochem Biophys Res Commun
June 2022
We previously reported that the canonical Wnt signaling pathway is activated during compensatory islet hyperplasia in prediabetic mice. Here, we aimed to expand our knowledge concerning the Wnt signaling partners and modulators involved in this process. We report here that Axin1, Axin2, and DACT1, inhibitors of the canonical Wnt signaling pathway, displayed no change in their expression, while GSK-3β, a multi-functional kinase that acts as a negative regulator of this pathway as well as affects insulin secretion/action, was up-regulated in hyperplastic islets of prediabetic mice.
View Article and Find Full Text PDFLancet Microbe
October 2021
Background: Mutations accrued by SARS-CoV-2 lineage P.1-first detected in Brazil in early January, 2021-include amino acid changes in the receptor-binding domain of the viral spike protein that also are reported in other variants of concern, including B.1.
View Article and Find Full Text PDFRegeneration is a widely spread process across the animal kingdom, including many species of marine crustaceans. It is strongly linked to hormonal cycles and, therefore, a great endpoint candidate for toxicology studies. We selected the amphipod Parhyale hawaiensis as test organism, already used in ecotoxicological studies and able to regenerate its body appendages.
View Article and Find Full Text PDFGut Microbes
February 2021
Microbiota-derived molecules called short-chain fatty acids (SCFAs) play a key role in the maintenance of the intestinal barrier and regulation of immune response during infectious conditions. Recent reports indicate that SARS-CoV-2 infection changes microbiota and SCFAs production. However, the relevance of this effect is unknown.
View Article and Find Full Text PDFMammalian embryogenesis is a paradigm of regulative development as mouse embryos show plasticity in the regulation of cell fate, cell number, and tissue morphogenesis. However, the mechanisms behind embryo plasticity remain largely unknown. Here, we determine how mouse embryos respond to an increase in cell numbers to regulate the timing and mechanism of embryonic morphogenesis, leading to the formation of the pro-amniotic cavity.
View Article and Find Full Text PDFAnalysis of the transcriptome of organisms exposed to toxicants offers new insights for ecotoxicology, but further research is needed to enhance interpretation of results and effectively incorporate them into useful environmental risk assessments. Factors that must be clarified to improve use of transcriptomics include assessment of the effect of organism sex within the context of toxicant exposure. Amphipods are well recognized as model organisms for toxicity evaluation because of their sensitivity and amenability to laboratory conditions.
View Article and Find Full Text PDFThe identification of subpharyngeal cardiac precursors has had a strong influence on the way we think about early cardiac development. From this discovery was born the concept of multiple heart fields. Early support for the concept came from gene expression, genetic retrospective fate mapping, and gene targeting studies, which collectively suggested the existence of a second heart field (SHF) on the basis of specific Islet-1 (Isl-1) expression, presence of two cardiac ancestral lineages, and compatible cardiac knockout phenotypes, respectively.
View Article and Find Full Text PDFHairy stripes in Tribolium are generated during blastoderm and germ band extension, but a direct role for Tc-h in trunk segmentation was not found. We have studied here several aspects of hairy function and expression in Tribolium, to further elucidate its role. First, we show that there is no functional redundancy with other hairy paralogues in Tribolium.
View Article and Find Full Text PDFTribolium castaneum is a member of the most species-rich eukaryotic order, a powerful model organism for the study of generalized insect development, and an important pest of stored agricultural products. We describe its genome sequence here. This omnivorous beetle has evolved the ability to interact with a diverse chemical environment, as shown by large expansions in odorant and gustatory receptors, as well as P450 and other detoxification enzymes.
View Article and Find Full Text PDFThe gap gene hunchback in Drosophila acts during syncytial blastoderm stage via a short-range gradient and concentration-dependent activation or repression of target genes. Orthologues of hunchback can be easily found in other insects, but it has been unclear how well its functions are conserved. The segmentation process in most insect embryos occurs under cellular conditions, which should not allow the formation of diffusion-controlled transcription factor gradients.
View Article and Find Full Text PDFSegmentation genes in insects are required for generating the subdivisions of the early embryo. We describe here a new member of the gap family of segmentation genes in the flour beetle Tribolium, mille-pattes (mlpt). mlpt knockdown leads to transformation of the abdominal segments into thoracic segments, providing embryos with up to ten pairs of legs.
View Article and Find Full Text PDF