Publications by authors named "Henrique L Piva"

Glioblastoma (GBM) is the most common brain cancer characterized by aggressive and infiltrated tumors. For this, hybrid biopolymer-lipid nanoparticles coated with biopolymers such as chitosan and lipidic nanocarriers (LN) loaded with a photosensitizer (AlClPc) can be used for GBM photodynamic therapy. The chitosan-coated LN exhibited stable physicochemical characteristics and presented as an excellent lipid nanocarrier with highly efficiently encapsulated photosensitizer chloro-aluminum phthalocyanine (AlClPc).

View Article and Find Full Text PDF

mTOR is a signaling pathway involved in cell survival, cell stress response, and protein synthesis that may be a key point in sepsis-induced cardiac dysfunction. Curcumin has been reported in vitro as an mTOR inhibitor compound; however, there are no studies demonstrating this effect in experimental sepsis. Thus, this study aimed to evaluate the action of curcumin on the mTOR pathway in the heart of septic mice.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a progressive and chronic neurodegenerative disease of the central nervous system. Early treatment for PD is efficient; however, long-term systemic medication commonly leads to deleterious side-effects. Strategies that enable more selective drug delivery to the brain using smaller dosages, while crossing the complex brain-blood barrier (BBB), are highly desirable to ensure treatment efficacy and decrease/avoid unwanted outcomes.

View Article and Find Full Text PDF

1,8-cineole is a monoterpene commonly used by the food, cosmetic, and pharmaceutical industries owing to its flavor and fragrances properties. In addition, this bioactive monoterpene has demonstrated bactericidal and fungicidal activities. However, such activities are limited due to its low aqueous solubility and stability.

View Article and Find Full Text PDF

Breast cancer is the most common neoplasm among women but thanks to innovative therapies, patients' prognosis has considerably improved. In this aspect, nanotechnology has been applied for cancer therapy aiming to reduce its usual side effects. In this study we aimed to evaluate the effects of nanoemulsions containing photosensitizer and chemotherapeutic agents associated with photodynamic therapy in a breast cancer in vivo model.

View Article and Find Full Text PDF

We have prepared and characterized a cholesterol-rich nanoemulsion called LDE, a mimic of classic lipoprotein macromolecules, that can be applied as a new drug delivery system for aluminum phthalocyanine chloride (PcAlCl). The LDE containing PcAlCl system prepared herein had mean size and zeta potential of 127 nm and -29 mV, respectively, and encapsulation rate efficiency was 81%, and stability of 17 months. Compared to classical liposomes, LDE was more efficient, especially in brain diseases like glioblastoma (GBM), as revealed by tests on the U-87 MG cell line.

View Article and Find Full Text PDF

Objectives: This clinical study was developed to primarily evaluate the Complete Cytopathological Response Rate of Cervical Intraepithelial Neoplasms to PDT using chitosan nanocapsules containing Chlorocyan-aluminum phthalocyanine as a photoactive agent. Analyses of the Free Recurrence Interval, toxicity profile (immediate and late), and complications (immediate and late), were secondarily analyzed.

Methods: This study was previously approved by the National Council of Ethics in Research of Brazil (CONEP), on May 28, 2014, under case number 19182113.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) is an anticancer modality depicting an induced oxidative stress as the mechanism of action that ultimately culminates in cell death. The apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a key protein promoting bad prognostic in several cancer types. APE1/Ref-1 is able to regulate cell response to oxidative stress by two basic protein activities, including a reduction-oxidation-function and a DNA repair-function.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is an extremely aggressive malignant brain tumor. Despite advances in treatment modalities, it remains largely incurable. This unfavorable prognosis for GBM is at least partly due to the lack of a successful drug delivery system across the blood-brain barrier (BBB).

View Article and Find Full Text PDF

Hydrophobic drugs, such as methotrexate, are not easily delivered into the human body. Therefore, the use of amphiphilic nanoplatforms to the transport of these drugs through the bloodstream is a challenge. While the hydrophobic region interacts with the drug, the hydrophilic outer layer enhances its bioavailability and circulation time.

View Article and Find Full Text PDF