The disturbing emergence of multidrug-resistant strains of Mycobacterium tuberculosis (Mtb) has been driving the scientific community to urgently search for new and efficient antitubercular drugs. Despite the various drugs currently under evaluation, isoniazid is still the key and most effective component in all multi-therapeutic regimens recommended by the WHO. This paper describes the QSAR-oriented design, synthesis and in vitro antitubercular activity of several potent isoniazid derivatives (isonicotinoyl hydrazones and isonicotinoyl hydrazides) against H37Rv and two resistant Mtb strains.
View Article and Find Full Text PDFHuman neutrophil elastase (HNE) is an attractive target for treating chronic and acute inflammatory lung diseases. An optimization campaign of the kojic acid scaffold to develop new potent HNE inhibitors is reported. O3-Pivaloyl derivatives were shown to be the most potent inhibitors with IC5o values down to 80 nM.
View Article and Find Full Text PDFThe synthesis, inhibitory activity and mode of action of oxazolidine-2,4-diones against porcine pancreatic elastase, here used as a model for human neutrophil elastase, are reported. The nature of N-substitution at the oxazolidine-2,4-dione scaffold has large effect on the inhibitory potency against elastase. N-Acyl and N-sulfonyloxazolidine-2,4-diones emerged as potent pseudo-irreversible inhibitors, displaying high second-order rate constants for PPE inactivation.
View Article and Find Full Text PDF