Obesity is a medical disorder caused by multiple mechanisms of dysregulated energy balance. A major consequence of obesity is an increased risk to develop diabetes, diabetic complications and cardiovascular disease. While a better understanding of the molecular mechanisms linking obesity, insulin resistance and cardiovascular disease is needed, translational research of the human pathology is hampered by the available cellular and rodent model systems.
View Article and Find Full Text PDFThis study's aim was to demonstrate that the combination of patient immune profiling and testing in a humanized mouse model of ulcerative colitis (UC) might lead to patient stratification for treatment with oxelumab. First, immunological profiles of UC patients and non-UC donors were analyzed for CD4+ T cells expressing OX40 (CD134; also known as TNFRSF4) and CD14+ monocytes expressing OX40L (CD252; also known as TNFSF4) by flow cytometric analysis. A significant difference was observed between the groups for CD14+ OX40L+ (UC: n=11, 85.
View Article and Find Full Text PDFTo date, no comprehensive analysis of autoantibodies in sera of patients with ulcerative colitis has been conducted. To analyze the spectrum of autoantibodies and to elucidate their role serum-IgG from UC patients (n = 49) and non-UC donors (n = 23) were screened by using a human protein microarray. Screening yielded a remarkable number of 697 differentially-reactive at the nominal 0·01 significance level (FDR<0·1) of the univariate test between the UC and the non-UC group.
View Article and Find Full Text PDFBackground: To date, responsiveness to tumor necrosis factor alpha inhibitors in ulcerative colitis (UC) patients is not predictable. This is partially due to a lack of understanding of the underlying inflammatory processes. The aim of this study was to identify immunological subgroups of patients with UC and to test responsiveness to adalimumab in these subgroups in the mouse model of ulcerative colitis (UC), which is based on NOD/scid IL-2Rγ null (NSG) mice reconstituted with peripheral blood mononuclear cells (PBMCs; NSG-UC).
View Article and Find Full Text PDFGlucose is the preferred source of energy in activated inflammatory cells. Glucose uptake into the cell is ensured by a family of glucose uptake transporters (GLUTs), which have been identified as off-target molecules of the HIV protease inhibitor ritonavir. In this study, we examined the effect of ritonavir on inflammation and Peripheral blood mononuclear cells (PBMCs) were activated with anti-CD3 in the presence or absence of ritonavir and analyzed by flow cytometric analysis.
View Article and Find Full Text PDFBackground: CD1a-expressing CD14+ monocytes have been identified as inducers of autoreactive T cells. In this study, the link between inflammatory and metabolic signals and CD1a-expressing monocytes in vitro and in vivo was examined, and CD1a was evaluated as a potential therapeutic target for treatment of ulcerative colitis (UC).
Methods: Peripheral blood mononuclear cells (PBMCs) from UC patients and non-UC donors were incubated with phosphatidylcholine (PC) for 2 and 7 days and subjected to flow cytometric analysis.
Background: Ulcerative colitis (UC) is a highly progressive inflammatory disease that requires the interaction of epithelial, immune, endothelial and muscle cells and fibroblasts. Previous studies suggested two inflammatory conditions in UC-patients: 'acute' and 'remodeling' and that the design of a disease network might improve the understanding of the inflammatory processes. The objective of the study was to design and validate a disease network in the NOD-SCID IL2rγ (NSG)-UC mouse model to get a better understanding of the inflammatory processes.
View Article and Find Full Text PDFAnimal models reflective of ulcerative colitis (UC) remain a major challenge, and yet are crucial to understand mechanisms underlying the onset of disease and inflammatory characteristics of relapses and remission. Mouse models in which colitis-like symptoms are induced through challenge with toxins such as oxazolone, dextran sodium sulfate (DSS) or 2,4,6-trinitrobenzenesulfonic acid (TNBS) have been instrumental in understanding the inflammatory processes of UC. However, these neither reflect the heterogeneous symptoms observed in the UC-affected population nor can they be used to test the efficacy of inhibitors developed against human targets where high sequence and structural similarity of the respective ligands is lacking.
View Article and Find Full Text PDF