The objective of this study was to identify urinary metabolite profiles that discriminate between high and low intake of dietary protein during a dietary intervention. Seventy-seven overweight, non-diabetic subjects followed an 8-week low-calorie diet (LCD) and were then randomly assigned to a high (HP) or low (LP) protein diet for 6 months. Twenty-four hours urine samples were collected at baseline (prior to the 8-week LCD) and after dietary intervention; at months 1, 3 and 6, respectively.
View Article and Find Full Text PDFWe have performed a metabolite quantitative trait locus (mQTL) study of the (1)H nuclear magnetic resonance spectroscopy ((1)H NMR) metabolome in humans, building on recent targeted knowledge of genetic drivers of metabolic regulation. Urine and plasma samples were collected from two cohorts of individuals of European descent, with one cohort comprised of female twins donating samples longitudinally. Sample metabolite concentrations were quantified by (1)H NMR and tested for association with genome-wide single-nucleotide polymorphisms (SNPs).
View Article and Find Full Text PDF¹H Nuclear Magnetic Resonance spectroscopy (¹H NMR) is increasingly used to measure metabolite concentrations in sets of biological samples for top-down systems biology and molecular epidemiology. For such purposes, knowledge of the sources of human variation in metabolite concentrations is valuable, but currently sparse. We conducted and analysed a study to create such a resource.
View Article and Find Full Text PDFOptimizing NMR experimental parameters for high-throughput metabolic phenotyping requires careful examination of the total biochemical information obtainable from (1)H NMR data, which includes concentration and molecular dynamics information. Here we have applied two different types of mathematical transformation (calculation of the first derivative of the NMR spectrum and Gaussian shaping of the free-induction decay) to attenuate broad spectral features from macromolecules and enhance the signals of small molecules. By application of chemometric methods such as principal component analysis (PCA), orthogonal projections to latent structures discriminant analysis (O-PLS-DA) and statistical spectroscopic tools such as statistical total correlation spectroscopy (STOCSY), we show that these methods successfully identify the same potential biomarkers as spin-echo (1)H NMR spectra in which broad lines are suppressed via T2 relaxation editing.
View Article and Find Full Text PDFA large number of databases are currently being implemented within toxicology aiming to integrate diverse biological data, such as clinical chemistry, expression, and other types of data. However, for these endeavors to be successful, tools for integration, visualization, and interpretation are needed. This paper presents a method for data integration using a hierarchical model based on either principal component analysis or partial least squares discriminant analysis of clinical chemistry, expression, and nuclear magnetic resonance data using a toxicological study as case.
View Article and Find Full Text PDFMetabonomics has been defined as "quantitative measurement of the dynamic multiparametric metabolic response of living systems to pathophysiological stimuli or genetic modification" and can provide information on disease processes, drug toxicity, and gene function. In this approach many samples of biological origin (biofluids such as urine or plasma) are analyzed using techniques that produce simultaneous detection. A variety of analytical metabolic profiling tools are used routinely, are also currently under development, and include proton nuclear magnetic resonance spectroscopy and mass spectrometry with a prior online separation step such as high-performance liquid chromatography, ultra-performance liquid chromatography, or gas chromatography.
View Article and Find Full Text PDF