Publications by authors named "Henrik Semb"

Aims/hypothesis: Rodent pancreas development has been described in great detail. On the other hand, there are still gaps in our understanding of the developmental trajectories of pancreatic cells during human ontogenesis. Here, our aim was to map the spatial and chronological dynamics of human pancreatic cell differentiation and proliferation by using 3D imaging of cleared human embryonic and fetal pancreases.

View Article and Find Full Text PDF

MODY3 is a monogenic hereditary form of diabetes caused by mutations in the transcription factor HNF1A. The patients progressively develop hyperglycemia due to perturbed insulin secretion, but the pathogenesis is unknown. Using patient-specific hiPSCs, we recapitulate the insulin secretion sensitivity to the membrane depolarizing agent sulfonylurea commonly observed in MODY3 patients.

View Article and Find Full Text PDF

We have developed a protocol to quantify the position of a cell in a branched structure based on two-dimensional microscopy images of tissue sections. Biological branched structures include organs such as the lungs, kidneys, and pancreas. In these organs, cell fate has been correlated with position, based on a qualitative estimate.

View Article and Find Full Text PDF

We here report a flow-cytometry-based protocol to measure single-cell protein expression in small samples. The protocol is optimized for simultaneous detection of fluorescent proteins and intracellular and surface antigens in the embryonic pancreas from the mouse. Owing to low cell numbers, current protocols for flow cytometric analysis of embryonic tissues rely on tissue pooling.

View Article and Find Full Text PDF

The mechanism of how organ shape emerges and specifies cell fate is not understood. Pancreatic duct and endocrine lineages arise in a spatially distinct domain from the acinar lineage. Whether these lineages are pre-determined or settle once these niches have been established remains unknown.

View Article and Find Full Text PDF

The pancreas originates from two epithelial evaginations of the foregut, which consist of multipotent epithelial progenitors that organize into a complex tubular epithelial network. The trunk domain of each epithelial branch consists of bipotent pancreatic progenitors (bi-PPs) that give rise to both duct and endocrine lineages, whereas the tips give rise to acinar cells. Here we identify the extrinsic and intrinsic signalling mechanisms that coordinate the fate-determining transcriptional events underlying these lineage decisions.

View Article and Find Full Text PDF

Apicobasal polarity is known to affect epithelial morphogenesis and cell differentiation, but it remains unknown how these processes are mechanistically orchestrated. We find that ligand-specific EGFR signalling via PI(3)K and Rac1 autonomously modulates apicobasal polarity to enforce the sequential control of morphogenesis and cell differentiation. Initially, EGF controls pancreatic tubulogenesis by negatively regulating apical polarity induction.

View Article and Find Full Text PDF

Information remains scarce on human development compared to animal models. Here, we reconstructed human fetal pancreatic differentiation using cell surface markers. We demonstrate that at 7weeks of development, the glycoprotein 2 (GP2) marks a multipotent cell population that will differentiate into the acinar, ductal or endocrine lineages.

View Article and Find Full Text PDF

Stem cell-based therapy for type 1 diabetes would benefit from implementation of a cell purification step at the pancreatic endoderm stage. This would increase the safety of the final cell product, allow the establishment of an intermediate-stage stem cell bank, and provide a means for upscaling β cell manufacturing. Comparative gene expression analysis revealed glycoprotein 2 (GP2) as a specific cell surface marker for isolating pancreatic endoderm cells (PECs) from differentiated hESCs and human fetal pancreas.

View Article and Find Full Text PDF

Vitamin A-derived retinoic acid (RA) signals are critical for the development of several organs, including the pancreas. However, the tissue-specific control of RA synthesis in organ and cell lineage development has only poorly been addressed in vivo. Here, we show that retinol dehydrogenase-10 (Rdh10), a key enzyme in embryonic RA production, has important functions in pancreas organogenesis and endocrine cell differentiation.

View Article and Find Full Text PDF

Canonical Wnt and Nodal signaling are both required for induction of the primitive streak (PS), which guides organization of the early embryo. The Wnt effector β-catenin is thought to function in these early lineage specification decisions via transcriptional activation of Nodal signaling. Here, we demonstrate a broader role for β-catenin in PS formation by analyzing its genome-wide binding in a human embryonic stem cell model of PS induction.

View Article and Find Full Text PDF

Delamination plays a pivotal role during normal development and cancer. Previous work has demonstrated that delamination and epithelial cell movement within the plane of an epithelium are associated with a change in cellular phenotype. However, how this positional change is linked to differentiation remains unknown.

View Article and Find Full Text PDF

In the context of a cellular therapy for diabetes, methods for pancreatic progenitor expansion and subsequent differentiation into insulin-producing beta cells would be extremely valuable. Here we establish three-dimensional culture conditions in Matrigel that enable the efficient expansion of dissociated mouse embryonic pancreatic progenitors. By manipulating the medium composition we generate either hollow spheres, which are mainly composed of pancreatic progenitors, or complex organoids that spontaneously undergo pancreatic morphogenesis and differentiation.

View Article and Find Full Text PDF

In embryonic stem cells, removal of oxidatively damaged proteins is triggered upon the first signs of cell fate specification but the underlying mechanism is not known. Here, we report that this phase of differentiation encompasses an unexpected induction of genes encoding the proteasome activator PA28αβ (11S), subunits of the immunoproteasome (20Si), and the 20Si regulator TNFα. This induction is accompanied by assembly of mature PA28-20S(i) proteasomes and elevated proteasome activity.

View Article and Find Full Text PDF

Characterization of directed differentiation of pluripotent stem cells towards therapeutically relevant cell types, including pancreatic beta-cells and hepatocytes, depends on molecular markers and assays that resolve the signature of individual cells. Pancreas and liver both have a common origin of anterior definitive endoderm (DE). Here, we differentiated human embryonic stem cells towards DE using three different activin A based treatments.

View Article and Find Full Text PDF

Background: Diabetic retinopathy and retinopathy of prematurity are diseases caused by pathological angiogenesis in the retina as a consequence of local hypoxia. The underlying mechanism for epiretinal neovascularization (tuft formation), which contributes to blindness, has yet to be identified. Neural cell adhesion molecule (N-CAM) is expressed by Müller cells and astrocytes, which are in close contact with the retinal vasculature, during normal developmental angiogenesis.

View Article and Find Full Text PDF

Endoderm development is dependent on inductive signals from different structures in close vicinity, including the notochord, lateral plate mesoderm and endothelial cells. Recently, we demonstrated that a functional vascular system is necessary for proper pancreas development, and that sphingosine-1-phosphate (S1P) exhibits the traits of a blood vessel-derived molecule involved in early pancreas morphogenesis. To examine whether S1P(1)-signaling plays a more general role in endoderm development, S1P(1)-deficient mice were analyzed.

View Article and Find Full Text PDF

Background: Constitutive promoters that ensure sustained and high level gene expression are basic research tools that have a wide range of applications, including studies of human embryology and drug discovery in human embryonic stem cells (hESCs). Numerous cellular/viral promoters that ensure sustained gene expression in various cell types have been identified but systematic comparison of their activities in hESCs is still lacking.

Methodology/principal Findings: We have quantitatively compared promoter activities of five commonly used constitutive promoters, including the human β-actin promoter (ACTB), cytomegalovirus (CMV), elongation factor-1α, (EF1α), phosphoglycerate kinase (PGK) and ubiquitinC (UbC) in hESCs.

View Article and Find Full Text PDF

Background: Pluripotency and self-renewal of human embryonic stem cells (hESCs) is mediated by a complex interplay between extra- and intracellular signaling pathways, which regulate the expression of pluripotency-specific transcription factors. The homeodomain transcription factor NANOG plays a central role in maintaining hESC pluripotency, but the precise role and regulation of NANOG are not well defined.

Methodology/principal Findings: To facilitate the study of NANOG expression and regulation in viable hESC cultures, we generated fluorescent NANOG reporter cell lines by gene targeting in hESCs.

View Article and Find Full Text PDF

The cadherin family of cell adhesion molecules mediates adhesive interactions that are required for the formation and maintenance of tissues. Previously, we demonstrated that N-cadherin, which is required for numerous morphogenetic processes, is expressed in the pancreatic epithelium at E9.5, but later becomes restricted to endocrine aggregates in mice.

View Article and Find Full Text PDF

This report summarises our efforts in deriving, characterising and banking of 20 different human embryonic stem cell lines. We have derived a large number of human embryonic stem cell lines between 2001 and 2005. One of these cell lines was established under totally xeno-free culture conditions.

View Article and Find Full Text PDF

We investigated a family from northern Sweden in which three of four siblings have congenital chylomicronemia. LPL activity and mass in pre- and postheparin plasma were low, and LPL release into plasma after heparin injection was delayed. LPL activity and mass in adipose tissue biopsies appeared normal.

View Article and Find Full Text PDF

Human embryonic stem cells offer a potential unlimited supply for functional hepatocytes, since they can differentiate into hepatocyte-like cells displaying a characteristic hepatic morphology and expressing various hepatic markers. These cells could be used in various applications such as studies of drug metabolism and hepatotoxicity, which however, would require a significant expression of drug metabolizing enzymes. To derive these cells we use a stepwise differentiation protocol where growth- and maturation factors are added.

View Article and Find Full Text PDF

Understanding how cells polarize and coordinate tubulogenesis during organ formation is a central question in biology. Tubulogenesis often coincides with cell-lineage specification during organ development. Hence, an elementary question is whether these two processes are independently controlled, or whether proper cell specification depends on formation of tubes.

View Article and Find Full Text PDF