Publications by authors named "Henrik Sandberg"

The paper studies multi-competitive continuous-time epidemic processes. We consider the setting where two viruses are simultaneously prevalent, and the spread occurs due to individual-to-individual interaction. In such a setting, an individual is either not affected by any of the viruses, or infected by one and exactly one of the two viruses.

View Article and Find Full Text PDF

Monitoring the "physics" of cyber-physical systems to detect attacks is a growing area of research. In its basic form a security monitor creates time-series models of sensor readings for an industrial control system and identifies anomalies in these measurements in order to identify potentially false control commands or false sensor readings. In this paper, we review previous work on physics-based anomaly detection based on a unified taxonomy that allows us to identify limitations and unexplored challenges, and propose new solutions.

View Article and Find Full Text PDF

In this paper, we advocate the use of open dynamical systems, i.e. systems sharing input and output variables with their environment, and the dissipativity theory initiated by Jan Willems as models of thermodynamical systems, at the microscopic and macroscopic level alike.

View Article and Find Full Text PDF

We determine the maximum amount of work extractable in finite time by a demon performing continuous measurements on a quadratic Hamiltonian system subjected to thermal fluctuations, in terms of the information extracted from the system. The maximum work demon is found to apply a high-gain continuous feedback involving a Kalman-Bucy estimate of the system state and operates in nonequilibrium. A simple and concrete electrical implementation of the feedback protocol is proposed, which allows for analytic expressions of the flows of energy, entropy, and information inside the demon.

View Article and Find Full Text PDF

The ability to maintain state awareness in the face of unexpected and unmodeled errors and threats is a defining feature of a resilient control system. Therefore, in this paper, we study the problem of distributed fault detection and isolation (FDI) in large networked systems with uncertain system models. The linear networked system is composed of interconnected subsystems and may be represented as a graph.

View Article and Find Full Text PDF