The functions of blood flow in the morphogenesis of mammalian arteries and veins are not well understood. We examined the development of the dorsal aorta (DA) and the cardinal vein (CV) in Ncx1 mutants, which lack blood flow due to a deficiency in a sodium calcium ion exchanger expressed specifically in the heart. The mutant DA and CV were abnormally connected.
View Article and Find Full Text PDFCoordinated arterial-venous differentiation is crucial for vascular development and function. The origin of the cardinal vein (CV) in mammals is unknown, while conflicting theories have been reported in chick and zebrafish. Here, we provide the first molecular characterization of endothelial cells (ECs) expressing venous molecular markers, or venous-fated ECs, within the emergent dorsal aorta (DA).
View Article and Find Full Text PDFImpaired cardiac function is associated with myocardial triglyceride accumulation, but it is not clear how the lipids accumulate or whether this accumulation is detrimental. Here we show that hypoxia/ischemia-induced accumulation of lipids in HL-1 cardiomyocytes and mouse hearts is dependent on expression of the VLDL receptor (VLDLR). Hypoxia-induced VLDLR expression in HL-1 cells was dependent on HIF-1α through its interaction with a hypoxia-responsive element in the Vldlr promoter, and VLDLR promoted the endocytosis of lipoproteins.
View Article and Find Full Text PDFLipoma preferred partner (LPP) was recently recognized as a smooth muscle marker that plays a role in smooth muscle cell migration. In this report, we focus on the transcriptional regulation of the LPP gene. In particular, we investigate whether LPP is directly regulated by serum response factor (SRF).
View Article and Find Full Text PDFObjective: The molecular mechanisms that regulate pericyte differentiation are not well understood, partly because of the lack of well-characterized in vitro systems that model this process. In this article, we develop a mouse embryonic stem (ES) cell-based angiogenesis/vasculogenesis assay and characterize the system for vascular smooth muscle cell (VSMC) and pericyte differentiation.
Methods And Results: ES cells that were cultured for 5 days on OP9 stroma cells upregulated their transcription of VSMC and pericyte selective genes.