Biological membranes have distinct geometries that confer specific functions. However, the molecular mechanisms underlying the phenomenological geometry/function correlations remain elusive. We studied the effect of membrane geometry on the localization of membrane-bound proteins.
View Article and Find Full Text PDFProtein immobilization techniques on polymeric supports have enabled many applications in biotechnology and materials science. Attaching the proteins with controlled orientations has inherent advantages, but approaches for doing this have been largely limited to cysteine or noncanonical amino acid targeting. Herein, we report a method to attach the N-terminal positions of native proteins to polymer resins site-specifically through the use of 2-pyridinecarboxyaldehyde (2PCA) derivatives.
View Article and Find Full Text PDFWe have synthesized targeted, selective, and highly sensitive (129)Xe NMR nanoscale biosensors using a spherical MS2 viral capsid, Cryptophane A molecules, and DNA aptamers. The biosensors showed strong binding specificity toward targeted lymphoma cells (Ramos line). Hyperpolarized (129)Xe NMR signal contrast and hyper-CEST (129)Xe MRI image contrast indicated its promise as highly sensitive hyperpolarized (129)Xe NMR nanoscale biosensor for future applications in cancer detection in vivo.
View Article and Find Full Text PDFControlled self-assembly (SA) of proteins offers the possibility to tune their properties or to create new materials. Herein, we present the synthesis of a modified human insulin (HI) with two distinct metal-ion binding sites, one native, the other abiotic, enabling hierarchical SA through coordination with two different metal ions. Selective attachment of an abiotic 2,2'-bipyridine (bipy) ligand to HI, yielding HI-bipy, enabled Zn(II)-binding hexamers to SA into trimers of hexamers, [[HI-bipy]6]3, driven by octahedral coordination to a Fe(II) ion.
View Article and Find Full Text PDFThe chemical modification of proteins is an enabling technology for many scientific fields, including chemical biology, biophysics, bioengineering and materials science. These methods allow the attachment of strategically selected detection probes, polymers, drug molecules and analysis platforms. However, organic reactions that can proceed under conditions mild enough to maintain biomolecular function are limited.
View Article and Find Full Text PDFA site-selective dual-functionalization of peptides is presented, involving readily available maleimides as well as N-hydroxylamines. The modification proceeds through a three component 1,3-dipolar cycloaddition, forming a stable product. This was exemplified by the one-pot attachment of two molecular imaging moieties to a tumor binding cyclic peptide, and was extended to the conjugation of a DOTA chelator to a 12 kDa protein.
View Article and Find Full Text PDFPrecise control of the oligomeric state of proteins is of central importance for biological function and for the properties of biopharmaceutical drugs. Here, the self-assembly of 2,2'-bipyridine conjugated monomeric insulin analogues, induced through coordination to divalent metal ions, was studied. This protein drug system was designed to form non-native homo-oligomers through selective coordination of two divalent metal ions, Fe(II) and Zn(II), respectively.
View Article and Find Full Text PDFSelf-assembly of proteins mediated by metal ions is crucial in biological systems and a better understanding and novel strategies for its control are important. An abiotic metal ion ligand in a protein offers the prospect of control of the oligomeric state, if a selectivity over binding to the native side chains can be achieved. Insulin binds Zn(II) to form a hexamer, which is important for its storage in vivo and in drug formulations.
View Article and Find Full Text PDF