This review focuses on the use of polyolefins in high-voltage direct-current (HVDC) cables and capacitors. A short description of the latest evolution and current use of HVDC cables and capacitors is first provided, followed by the basics of electric insulation and capacitor functions. Methods to determine dielectric properties are described, including charge transport, space charges, resistivity, dielectric loss, and breakdown strength.
View Article and Find Full Text PDFResistive Field Grading Materials (RFGM) are used in critical regions in the electrical insulation system of high-voltage direct-current cable systems. Here, we describe a novel type of RFGM, based on a percolated network of zinc oxide (ZnO) tetrapods in a rubber matrix. The electrical conductivity of the composite increases by a factor of 10 for electric fields > 1 kV mm, as a result of the highly anisotropic shape of the tetrapods and their significant bandgap (3.
View Article and Find Full Text PDFDestruction of the spherulite structure in low-density polyethylene (LDPE) is shown to result in a more insulating material at low temperatures, while the reverse effect is observed at high temperatures. On average, the change in morphology reduced the conductivity by a factor of 4, but this morphology-related decrease in conductivity was relatively small compared with the conductivity drop of more than 2 decades that was observed after slight oxidation of the LDPE (at 25 °C and 30 kV mm). The conductivity of LDPE was measured at different temperatures (25-60 °C) and at different electrical field strengths (3.
View Article and Find Full Text PDFPromising electrical field grading materials (FGMs) for high-voltage direct-current (HVDC) applications have been designed by dispersing reduced graphene oxide (rGO) grafted with relatively short chains of poly (-butyl methacrylate) (PBMA) in a poly(ethylene--butyl acrylate) (EBA) matrix. All rGO-PBMA composites with a filler fraction above 3 vol.% exhibited a distinct non-linear resistivity with increasing electric field; and it was confirmed that the resistivity could be tailored by changing the PBMA graft length or the rGO filler fraction.
View Article and Find Full Text PDFMacromol Rapid Commun
August 2017
Field-grading materials (FGMs) are used to reduce the probability for electrical breakdowns in critical regions of electrical components and are therefore of great importance. Usually, FGMs are heavily filled (40 vol.%) with semi-conducting or conducting particles.
View Article and Find Full Text PDFAdding nano-sized fillers to epoxy has proven to be an effective method for improving dielectric breakdown strength (DBS). Evidence suggests that dispersion state, as well as chemistry at the filler-matrix interface can play a crucial role in property enhancement. Herein we investigate the contribution of both filler dispersion and surface chemistry on the AC dielectric breakdown strength of silica-epoxy nanocomposites.
View Article and Find Full Text PDFThe surface chemistry and ionization state of cross-linked poly(dimethylsiloxane) (PDMS) exposed to UV/ozone were studied as a function of treatment time. Various complementary and independent experimental techniques were utilized, which yielded information on the macroscopic as well as the nanometric scale. The average chemical composition of the PDMS surface was quantitatively investigated by time-of-flight secondary ion mass spectrometry (ToF-SIMS).
View Article and Find Full Text PDFChemical force microscopy (CFM) in water was used to map the surface hydrophobicity of UV/ozone-treated poly(dimethylsiloxane) (PDMS; Sylgard 184) as a function of the storage/recovery time. In addition to CFM pull-off force mapping, we applied indentation mapping to probe the changes in the normalized modulus. These experiments were complemented by results on surface properties assessed on the micrometer scale by X-ray photoelectron spectroscopy and water contact-angle measurements.
View Article and Find Full Text PDF