Currently, the increasing use of nickel metal-organic frameworks (Ni-MOF) and nickel oxide nanoparticles (NiO NPs) has raised concerns regarding their potential environmental impact on wastewater treatment systems. Herein, the responses of aerobic granular sludge (AGS) and algal-bacterial aerobic granular sludge (AB-AGS) to Ni-MOF and NiO NPs were investigated. The results showed that Ni-MOF concentrations of 50, 100, and 200 mg/L significantly reduced nutrient removal in both systems, particularly affecting ammonia, nitrite, and phosphorus removal, while denitrification processes remained stable.
View Article and Find Full Text PDFTitanium dioxide nanoparticles (TiO NPs) are extensively used in various fields and can consequently be detected in wastewater, making it necessary to study their potential impacts on biological wastewater treatment processes. In this study, the shock-load impacts of TiO NPs were investigated at concentrations ranging between 1 and 200 mg L on nutrient removal, extracellular polymeric substances (EPSs), microbial activity in aerobic granular sludge (AGS), and algal-bacterial granular sludge (AB-AGS) bioreactors. The results indicated that low concentration (≤10 mg L) TiO NPs had no effect on microbial activity or the removal of chemical oxygen demand (COD), nitrogen, and phosphorus, due to the increased production of extracellular polymeric substances (EPSs) in the sludge.
View Article and Find Full Text PDFIn this study, a chemical precipitation approach was adopted to produce a photocatalyst based on bismuth tungstate BiWO for enhanced and environmentally friendly organic pollutant degradation. Various tools such as X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), optical spectroscopy and X-ray photoelectron spectroscopy, were employed to assess the structural and morphological properties. Hence, the XRD profiles showed a well crystallized BiWO orthorhombic phase.
View Article and Find Full Text PDFLiposomal formulations, as versatile nanocarrier systems suitable for targeted delivery, have a highly focused role in the therapy development of unmet clinical needs and diagnostic imaging techniques. Formulating nanomedicine with suitable zeta potential is an essential but challenging task. Formulations with a minimum ±30 mV zeta potential are considered stable.
View Article and Find Full Text PDFThe one-step synthesis and characterization of a new and robust titanium-based metal-organic framework, ACM-1, is reported. In this structure, which is based on infinite Ti-O chains and 4,4',4'',4'''-(pyrene-1,3,6,8-tetrayl) tetrabenzoic acid as a photosensitizer ligand, the combination of highly mobile photogenerated electrons and a strong hole localization at the organic linker results in large charge-separation lifetimes. The suitable energies for band gap and conduction band minimum (CBM) offer great potential for a wide range of photocatalytic reactions, from hydrogen evolution to the selective oxidation of organic substrates.
View Article and Find Full Text PDFHere we report a new class of bio-inspired solid-liquid adhesive, obtained by simple mechanical dispersion of PVDF (polyvinylidene fluoride) (solid spheres) into PDMS (polydimethylsiloxane) (liquid). The adhesive behavior arises from strong solid-liquid interactions. This is a chemical reaction free adhesive (no curing time) that can be repeatedly used and is capable of instantaneously joining a large number of diverse materials (metals, ceramic, and polymer) in air and underwater.
View Article and Find Full Text PDFConsiderable effort has been devoted recently to replace platinum-based catalysts with their non-noble-metal counterparts in the oxygen reduction reaction (ORR) in fuel cells. Nitrogen-doped carbon structures emerged as possible candidates for this role, and their earth-abundant metal-decorated composites showed great promise. Here, we report on the simultaneous formation of nitrogen-doped graphene and iron nitride from the lyophilized mixture of graphene oxide and iron salt by high-temperature annealing in ammonia atmosphere.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2015
Understanding of water-related electrical conduction is of utmost importance in applications that utilize solid-state proton conductors. However, in spite of the vast amount of theoretical and experimental work published in the literature, thus far its mechanism remained unsolved. In this study, the structure-related ambient temperature electrical conduction of one-dimensional hydrophilic nanostructures was investigated.
View Article and Find Full Text PDFThe temperature dependence of dielectric processes in humid titanate nanowires was investigated via broadband dielectric spectroscopy under quasi-isosteric conditions in the temperature range of 150-350 K. It was found that the dynamic parameters obtained from low-temperature measurements cannot describe the dielectric behavior of the system above 273 K, implying changes in the dynamics of the corresponding dielectric processes. The calculated activation energies and pre-exponential factors counterintuitively increase linearly with the amount of adsorbed water, and a compensation effect was also found to apply to all contributions in the TiONW spectra.
View Article and Find Full Text PDFHeat-treated CaFe-layered double hydroxide samples were equilibrated under conditions of various relative humidities (11%, 43% and 75%). Measurements by FT-IR and dielectric relaxation spectroscopies revealed that partial to full reconstruction of the layered structure took place. Water types taking part in the reconstruction process were identified via dielectric relaxation measurements either at 298 K or on the flash-cooled (to 155 K) samples.
View Article and Find Full Text PDF