The delocalization length of charge carriers in organic semiconductors influences their mobility and is an important factor in the design of functional materials. Here, we have studied the radical anions of a series of linear and cyclic butadiyne-linked porphyrin oligomers using CW-EPR, H Mims ENDOR and NIR/MIR spectroelectrochemistry together with DFT calculations and multiscale molecular modeling. Low-temperature hyperfine EPR spectroscopy and optical data show that polarons are delocalized nonuniformly over about four porphyrins with most of the spin density on just two units even in the cyclic structures, in which all porphyrin sites are identical.
View Article and Find Full Text PDFExtended π-systems often form supramolecular aggregates, drastically changing their optical and electronic properties. However, aggregation processes can be difficult to characterize or predict. Here, we show that butadiyne-linked 8- and 12-porphyrin nanorings form stable and well-defined bimolecular aggregates with remarkably sharp NMR spectra, despite their dynamic structures and high molecular weights (12.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
April 2024
Strained macrocycles display interesting properties, such as conformational rigidity, often resulting in enhanced π-conjugation or enhanced affinity for non-covalent guest binding, yet they can be difficult to synthesize. Here we use computational modeling to design a template to direct the formation of an 18-porphyrin nanoring with direct meso-meso bonds between the porphyrin units. Coupling of a linear 18-porphyrin oligomer in the presence of this template gives the target nanoring, together with an unexpected 36-porphyrin ring by-product.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2024
Triplet dynamics in singlet fission depend strongly on the strength of the electronic coupling. Covalent systems in solution offer precise control over such couplings. Nonetheless, efficient free triplet generation remains elusive in most systems, as the intermediate triplet pair (T T ) is prone to triplet-triplet annihilation due to its spatial confinement.
View Article and Find Full Text PDFThe goal of harnessing the theoretical potential of singlet fission (SF), a process in which one singlet excited state is split into two triplet excited states, has become a central challenge in solar energy research. Covalently linked dimers provide crucial models for understanding the role of chromophore arrangement and coupling in SF. Sensitizers can be integrated into these systems to expand the absorption bandwidth through which SF can be accessed.
View Article and Find Full Text PDFNatural light-harvesting systems absorb sunlight and transfer its energy to the reaction centre, where it is used for photosynthesis. Synthetic chromophore arrays provide useful models for understanding energy migration in these systems. Research has focused on mimicking rings of chlorophyll molecules found in purple bacteria, known as 'light-harvesting system 2'.
View Article and Find Full Text PDFIn contrast to previous work, the synergy between panchromatic absorption and molecular singlet fission (SF) is exploited to optimize solar energy conversion through evaluation of the distance dependence of intramolecular Förster Resonance Energy Transfer (i-FRET) in a series of subphthalocyanines (SubPcs) linked to pentacene dimers (Pnc2s). To provide control over i-FRET, the molecular spacer rather than the energy donating SubPc is tailored in the corresponding SubPc-Pnc2 conjugates in terms of length (i.e.
View Article and Find Full Text PDFTemplate-directed synthesis has been used to prepare a fully π-conjugated cyclic porphyrin octamer, composed of both β,,β-edge-fused porphyrin tape units and butadiyne-linked porphyrins. The UV-vis-NIR spectra of this partially fused nanoring show that π-conjugation extends around the whole macrocycle, and that it has a smaller HOMO-LUMO gap than its all-butadiyne-linked analogue, as predicted by TD-DFT calculations. The H NMR shifts of the bound templates confirm the disrupted aromaticity of the edge-fused porphyrins in the neutral nanoring.
View Article and Find Full Text PDFThe link between allosteric cooperativity and template-directed synthesis has been investigated by studying complexes in which two oligopyridine ligands bind inside a zinc porphyrin nanoring in a stacked arrangement. The binding of a 6-porphyrin nanoring to two tridentate ligands (with -triazine or benzene cores) occurs with high negative allosteric cooperativity (α ≈ 10-10). Formation constants for 1:1 and 1:2 complexes were determined by UV-vis-NIR denaturation titration, using pyridine as a competing ligand, and cooperativity factors were confirmed by NMR spectroscopy.
View Article and Find Full Text PDFAromaticity can be defined by the ability of a molecule to sustain a ring current when placed in a magnetic field. Hückel's rule states that molecular rings with [4n + 2] π-electrons are aromatic, with an induced magnetization that opposes the external field inside the ring, whereas those with 4n π-electrons are antiaromatic, with the opposite magnetization. This rule reliably predicts the behaviour of small molecules, typically with fewer than 22 π-electrons (n = 5).
View Article and Find Full Text PDFA porphyrazine featuring complementary absorption to a pentacene dimer was chosen to fill the absorption gap of the latter in the range of 450 to 600 nm to realize panchromatic absorption through the visible region out to ca. 700 nm. Of even greater relevance is the quantitative intramolecular Förster resonance energy transfer (i-FRET) to funnel energy to the pentacene moieties, where efficient intramolecular singlet fission (i-SF) converts the singlet excited state into the corresponding triplet excited states.
View Article and Find Full Text PDFTweezer-like molecules comprised of two boron subphthalocyanine (SubPc) units were prepared by Sonogashira couplings and investigated using NMR spectroscopy for their ability to bind fullerenes (C and C). The preorganization of the tweezers provided association constants of ca. 10 M in toluene- d, while a SubPc monomer did not show any association.
View Article and Find Full Text PDFHybrid molecules involving subphthalocyanine and Buckminsterfullerene derivatives are interesting candidates as heavy metal free triplet sensitizers. Subphthalocyanine efficiently absorbs visible photons and transfer the singlet excited state energy to the Buckminsterfullerene where intersystem crossing produces triplet states in high yield. Thus, far the efficiency of the triplet-generating photophysics in these systems has been hampered by back energy transfer to the subphthalocyanine triplet state resulting in loss of excitation energy.
View Article and Find Full Text PDFA series of boron subphthalocyanine-tetracyanobutadiene-ferrocene (SubPc-TCBD-Fc) triads was synthesized by subjecting SubPcs with a ferrocenylethynyl substituent at either the axial or peripheral position to a [2 + 2] cycloaddition reaction with tetracyanoethylene followed by retroelectrocyclization. The ferrocenylethynyl unit was introduced at the axial position (at the boron atom) by a simple aluminum chloride-mediated alkynylation reaction, while functionalization at the SubPc periphery was accomplished by a Sonogashira coupling reaction. The conversion of one alkyne unit into a TCBD unit in combination with the location of the resulting TCBD-Fc moiety was found to have a strong influence on the optical and redox properties, which is ascribed to very different ground-state interactions between the individual donor/acceptor systems.
View Article and Find Full Text PDFBoron subphthalocyanines (SubPcs) are powerful chromophoric heterocycles that can be synthetically modified at both axial and peripheral positions. Acetylenic scaffolding offers the possibility of building large, unsaturated carbon-rich frameworks that can exhibit excellent electron-accepting properties, and when combined with SubPcs it presents a convenient method for preparing interesting chromophore-acceptor architectures. Here we present synthetic methodologies for the post-functionalization of the relatively sensitive SubPc chromophore via acetylenic coupling reactions.
View Article and Find Full Text PDFBoron subphthalocyanines comprised of three isoindole units bridged by aza-linkages are attractive light harvesters on account of their intense low-energy absorptions. Herein, we present a class of related compounds, in which one or two isoindole units are substituted for thieno[3,4-c]pyrrole units - thieno-fused subporphyrazines. Such changes have remarkable consequences for the optical properties, as was revealed by combined experimental and theoretical studies.
View Article and Find Full Text PDFA mild and versatile procedure is presented for functionalization of boron chloride subphthalocyanine at the axial boron position with trimethylsilyl-protected alkyne nucleophiles in the presence of aluminum chloride. The method allows a large variety of substituents on the alkyne units, including electron-donating/withdrawing aryl groups, silyl-protected alkynyl groups, as well as ferrocenyl and azulenyl groups. In addition, ferrocene itself reacts smoothly under these conditions allowing for directly anchoring it to the boron of the subphthalocyanine.
View Article and Find Full Text PDFStable bis(gold(I) alkynyl) complexes of tetraethynylethene (TEE) derivatives were readily prepared and employed in Sonogashira-like palladium-catalyzed phosphine-gold(I) halide elimination reactions with aryl iodides and redox-active tetrathiafulvalene (TTF) mono- and bisiodides. This presents a particularly convenient method for the preparation of symmetrical and asymmetrical tetrathiafulvalene (TTF)-fused radiaannulenes in good yields.
View Article and Find Full Text PDFDiselenide exchange is introduced as a reversible reaction in dynamic combinatorial chemistry in water. At neutral pH, diselenides are found to mix with disulfides and form dynamic combinatorial libraries of diselenides, disulfides, and selenenylsulfides.
View Article and Find Full Text PDF