Marine biota are redistributing at a rapid pace in response to climate change and shifting seascapes. While changes in fish populations and community structure threaten the sustainability of fisheries, our capacity to adapt by tracking and projecting marine species remains a challenge due to data discontinuities in biological observations, lack of data availability, and mismatch between data and real species distributions. To assess the extent of this challenge, we review the global status and accessibility of ongoing scientific bottom trawl surveys.
View Article and Find Full Text PDFThe relationship between biodiversity and ecosystem functioning (BEF) is a topic of considerable interest to scientists and managers because a better understanding of its underlying mechanisms may help us mitigate the consequences of biodiversity loss on ecosystems. Our current knowledge of BEF relies heavily on theoretical and experimental studies, typically conducted on a narrow range of spatio-temporal scales, environmental conditions, and trophic levels. Hence, whether a relationship holds in the natural environment is poorly understood, especially in exploited marine ecosystems.
View Article and Find Full Text PDFIn the western Baltic Sea (WBS), whiting Merlangius merlangus is the main piscivorous fish together with cod Gadus morhua. In the present study, we investigate the growth and food consumption rates of WBS M. merlangus and compare the growth rates of males and females with those of M.
View Article and Find Full Text PDFAchieving good environmental status in the Baltic Sea region requires decision support tools which are based on scientific knowledge across multiple disciplines. Such tools should integrate the complexity of the ecosystem and enable exploration of different natural and anthropogenic pressures such as climate change, eutrophication and fishing pressures in order to compare alternative management strategies. We present a new framework, with a Baltic implementation of the spatially-explicit end-to-end Atlantis ecosystem model linked to two external models, to explore the different pressures on the marine ecosystem.
View Article and Find Full Text PDFOffspring size reflects the optimal balance between female fecundity and allocation of energy to each offspring. Most fish, in particular teleost species, produce many small eggs, while others, notably elasmobranch species, have low fecundity and large offspring. No general explanation has yet been put forwards to explain these different strategies between species which occupy similar habitats.
View Article and Find Full Text PDFDistributions of species body sizes within a taxonomic group, for example, mammals, are widely studied and important because they help illuminate the evolutionary processes that produced these distributions. Distributions of the sizes of species within an assemblage delineated by geography instead of taxonomy (all the species in a region regardless of clade) are much less studied but are equally important and will illuminate a different set of ecological and evolutionary processes. We develop and test a mechanistic model of how diversity varies with body mass in marine ecosystems.
View Article and Find Full Text PDFBalanced harvesting, where species or individuals are exploited in accordance with their productivity, has been proposed as a way to minimize the effects of fishing on marine fish communities and ecosystems. This calls for a thorough examination of the consequences balanced harvesting has on fish community structure and yield. We use a size- and trait-based model that resolves individual interactions through competition and predation to compare balanced harvesting with traditional selective harvesting, which protects juvenile fish from fishing.
View Article and Find Full Text PDFAtlantic mackerel (Scomber scombrus) occurs on both sides of the north Atlantic and has traditionally been grouped into 5 spawning components, some of which were thought to be isolated natal homing stocks. Previous studies have provided no evidence for cross Atlantic migration and no or weak support for isolated spawning components within either side of the North Atlantic. We question the de-facto accepted hypothesis of isolation between spawning components on the basis of spawning and age distribution data.
View Article and Find Full Text PDFUnderstanding how human impacts have interacted with natural variability to affect populations and ecosystems is required for sustainable management and conservation. The Baltic Sea is one of the few large marine ecosystems worldwide where the relative contribution of several key forcings to changes in fish populations can be analyzed with empirical data. In this study we investigate how climate variability and multiple human impacts (fishing, marine mammal hunting, eutrophication) have affected multi-decadal scale dynamics of cod in the Baltic Sea during the 20th century.
View Article and Find Full Text PDF