Publications by authors named "Henrik G Kjaergaard"

Bioluminescence in fireflies and related insects arises as emission from the fluorophore oxyluciferin, yet the color of the emission in these insects can range from red to green. The chromophore's microenvironment or multiple tautomeric forms may be responsible for the color tuning; however, these effects are difficult to separate in condensed phases. To investigate the role of oxyluciferin tautomerization in the color tuning mechanism, gas-phase spectroscopy eliminates solvent effects and allows us to study the fluorescence from individual tautomers.

View Article and Find Full Text PDF

We have detected the methanol dimer, trimer, and tetramer at equilibrium conditions at room temperature in the gas phase using direct absorption Fourier transform infrared spectroscopy. The infrared intensity of the OH-stretching transitions are enhanced upon hydrogen bonding and are increasingly red-shifted with increasing cluster size, facilitating identification and quantification of the various clusters. We calculate the intensities of the bound OH-stretches, OH, for all clusters with a range of reduced dimensional vibrational models with different levels of electronic structure theory.

View Article and Find Full Text PDF

Proflavine, a fluorescent cationic dye with strong absorption in the visible, has been proposed as a potential contributor to diffuse interstellar bands (DIBs). To investigate this hypothesis, it is essential to examine the spectra of cold and isolated ions for comparison. Here, we report absorption spectra of proflavine ions, trapped in a liquid-nitrogen-cooled ion trap filled with helium-buffer gas, as well as fluorescence spectra to provide further information on the intrinsic photophysics.

View Article and Find Full Text PDF

Peroxyl radicals (RO) are important intermediates in the atmospheric oxidation processes. The RO can react with other RO to form reactive intermediates known as tetroxides, ROR. The reaction mechanisms of ROR formation and its various decomposition channels have been investigated in multiple computational studies, but previous approaches have not been able to provide a unified methodology that is able to connect all relevant reactions together.

View Article and Find Full Text PDF

We present a conceptually simple model for understanding the significant spectral changes that occur with the temperature in the infrared spectra of hydrogen-bound complexes. We have measured room-temperature spectra of the methanol dimer and two deuterated isotopologues in the OH(D)-stretching region. We correctly predict spectral changes observed in the gas phase for the bound OH stretch in the methanol dimer from jet-cooled to room temperature and corroborate this with experimental and theoretical results for deuterated isotopologues.

View Article and Find Full Text PDF

Despite its impact on the climate, the mechanism of methanesulfonic acid (MSA) formation in the oxidation of dimethyl sulfide (DMS) remains unclear. The DMS + OH reaction is known to form methanesulfinic acid (MSIA), methane sulfenic acid (MSEA), the methylthio radical (CHS), and hydroperoxymethyl thioformate (HPMTF). Among them, HPMTF reacts further to form SO and OCS, while the other three form the CHSO radical.

View Article and Find Full Text PDF

Recent developments in fluorescence spectroscopy have made it possible to measure both absorption and dispersed fluorescence spectra of isolated molecular ions at liquid-nitrogen temperatures. Absorption is here obtained from fluorescence-excitation experiments and does not rely on ion dissociation. One large advantage of reduced temperature compared to room-temperature spectroscopy is that spectra are narrow, and they provide information on vibronic features that can better be assigned from theoretical simulations.

View Article and Find Full Text PDF

Secondary organic aerosol (SOA) is ubiquitous in the atmosphere and plays a pivotal role in climate, air quality, and health. The production of low-volatility dimeric compounds through accretion reactions is a key aspect of SOA formation. However, despite extensive study, the structures and thus the formation mechanisms of dimers in SOA remain largely uncharacterized.

View Article and Find Full Text PDF

We investigate the gas-phase photo-oxidation of 2-ethoxyethanol (2-EE) initiated by the OH radical with a focus on its autoxidation pathways. Gas-phase autoxidation─intramolecular H-shifts followed by O addition─has recently been recognized as a major atmospheric chemical pathway that leads to the formation of highly oxygenated organic molecules (HOMs), which are important precursors for secondary organic aerosols (SOAs). Here, we examine the gas-phase oxidation pathways of 2-EE, a model compound for glycol ethers, an important class of volatile organic compounds (VOCs) used in volatile chemical products (VCPs).

View Article and Find Full Text PDF

Intramolecular vibrational transition wavenumbers and intensities were calculated in the fundamental HOH-bending, fundamental OH-stretching, first OH-stretching-HOH-bending combination, and first OH-stretching overtone (Δ = 2) regions of the water dimer's spectrum. Furthermore, the rotational-vibrational spectrum was calculated in the Δ = 2 region at 10 K, corresponding to the temperature of the existing jet-expansion experiments. The calculated spectrum was obtained by combining results from a full-dimensional (12D) vibrational and a reduced-dimensional vibrational-rotational-tunneling model.

View Article and Find Full Text PDF

Recently, hydroperoxy amides were identified as major products of OH-initiated autoxidation of tertiary amines in the atmosphere. The formation mechanism is analogous to that found for ethers and sulfides but substantially faster. However, the atmospheric fate of the hydroperoxy amides remains unknown.

View Article and Find Full Text PDF

Autoxidation has been acknowledged as a major oxidation pathway in a broad range of atmospherically important compounds including isoprene and monoterpenes. More recently, autoxidation has also been identified as central and even dominant in the atmospheric oxidation of the rather small nonhydrocarbons dimethyl sulfide (DMS) and trimethylamine (TMA). Here, we find even faster autoxidation in the aliphatic amine triethylamine (TEA).

View Article and Find Full Text PDF

We have detected the -butyl hydroperoxide dimer, (-BuOOH), in the gas phase at room temperature using conventional FTIR techniques. The dimer is identified by an asymmetric absorbance band assigned to the fundamental hydrogen-bound OH-stretch. The weighted band maximum of the dimer OH-stretch is located at ∼3452 cm, red-shifted by ∼145 cm from the monomer OH-stretching band.

View Article and Find Full Text PDF

Bioluminescence from fireflies, click beetles, and railroad worms ranges in color from green-yellow to orange to red. The keto form of oxyluciferin is considered a key emitter species in the proposed mechanisms to account for color variation. To establish the intrinsic photophysics in the absence of a microenvironment, we present experimental and theoretical gas-phase absorption and emission spectra of the 5,5-dimethyloxyluciferin anion (keto form) at room and cryogenic temperatures as well as lifetime measurements based on fluorescence.

View Article and Find Full Text PDF

The atmospheric oxidation of dimethyl sulfide and other emitted sulfur species leads to the formation of the methylthio radical, CHS, which can be further oxidized to the CHSO and CHSO radicals. We investigated computationally the reactions of these three sulfur-centered radicals with the peroxy radicals ROO and HOO. Our results demonstrate that CHS and CHSO react with these peroxy radicals to form short-lived peroxide intermediates, which then decompose via a concerted O-O bond scission and S═O double bond formation that results in an increased valence of the sulfur atom.

View Article and Find Full Text PDF

Alkoxy radicals are important intermediates in the gas-phase oxidation of volatile organic compounds (VOCs) determining the nature of the first-generation products. An accurate description of their chemistry under atmospheric conditions is essential for understanding the atmospheric oxidation of VOCs. Unfortunately, experimental measurements of the rate coefficients of unimolecular alkoxy radical reactions are scarce, especially for larger systems.

View Article and Find Full Text PDF

Organic hydrotrioxides (ROOOH) are known to be strong oxidants used in organic synthesis. Previously, it has been speculated that they are formed in the atmosphere through the gas-phase reaction of organic peroxy radicals (RO) with hydroxyl radicals (OH). Here, we report direct observation of ROOOH formation from several atmospherically relevant RO radicals.

View Article and Find Full Text PDF

A model based on the finite-basis representation of a vibrational Hamiltonian expressed in internal coordinates is developed. The model relies on a many-mode, low-order expansion of both the kinetic energy operator and the potential energy surface (PES). Polyad truncations and energy ceilings are used to control the size of the vibrational basis to facilitate accurate computations of the OH stretch and HOH bend intramolecular transitions of the water dimer (H O).

View Article and Find Full Text PDF

Oxidation of the monoterpene Δ3-carene (CH) is a potentially important and understudied source of atmospheric secondary organic aerosol (SOA). We present chamber-based measurements of speciated gas and particle phases during photochemical oxidation of Δ3-carene. We find evidence of highly oxidized organic molecules (HOMs) in the gas phase and relatively low-volatility SOA dominated by C-C species.

View Article and Find Full Text PDF

The vibrational spectroscopy of the water dimer provides an understanding of basic hydrogen bonding in water clusters, and with about one water dimer for every 1,000 water molecules, it plays a critical role in atmospheric science. Here, we review how the experimental and theoretical progress of the past decades has improved our understanding of water dimer vibrational spectroscopy under both cold and warm conditions. We focus on the intramolecular OH-stretching transitions of the donor unit, because these are the ones mostly affected by dimer formation and because their assignment has proven a challenge.

View Article and Find Full Text PDF

Fourier transform infrared spectroscopy has been used to follow the reaction of CHOCFCHF with either Cl or OH radicals within a photoreactor. Rate constants of (OH + CHOCFCHF) = (2.25 ± 0.

View Article and Find Full Text PDF

While action spectroscopy of cold molecular ions is a well-established technique to provide vibrationally resolved absorption features, fluorescence experiments are still challenging. Here we report the fluorescence spectra of pyronin-Y and resorufin ions at 100 K using a newly constructed setup. Spectra narrow upon cooling, and the emission maxima blueshift.

View Article and Find Full Text PDF

The atmospheric oxidation mechanisms of reduced sulfur compounds are of great importance in the biogeochemical sulfur cycle. The CHS radical represents an important intermediate in these oxidation processes. Under atmospheric conditions, CHS will predominantly react with O to form the peroxy radical CHSOO.

View Article and Find Full Text PDF

Autoxidation in the atmosphere has been realized in the last decade as an important process that forms highly oxidized products relevant for the formation of secondary organic aerosol and likely with detrimental human health effects. It is experimentally shown that the OH radical-initiated oxidation of trimethylamine, the most highly emitted amine in the atmosphere, proceeds via rapid autoxidation steps dominating its atmospheric oxidation process. All three methyl groups are functionalized within a timescale of 10 s following the reaction with OH radicals leading to highly oxidized products.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: