Streptophytes are best known as the clade containing the teeming diversity of embryophytes (land plants). Next to embryophytes are however a range of freshwater and terrestrial algae that bear important information on the emergence of key traits of land plants. Among these, the Klebsormidiophyceae stand out.
View Article and Find Full Text PDFPlant terrestrialization brought forth the land plants (embryophytes). Embryophytes account for most of the biomass on land and evolved from streptophyte algae in a singular event. Recent advances have unravelled the first full genomes of the closest algal relatives of land plants; among the first such species was Mesotaenium endlicherianum.
View Article and Find Full Text PDFThe filamentous and unicellular algae of the class Zygnematophyceae are the closest algal relatives of land plants. Inferring the properties of the last common ancestor shared by these algae and land plants allows us to identify decisive traits that enabled the conquest of land by plants. We sequenced four genomes of filamentous Zygnematophyceae (three strains of and one strain of ) and generated chromosome-scale assemblies for all strains of the emerging model system .
View Article and Find Full Text PDFThe evolution of streptophytes had a profound impact on life on Earth. They brought forth those photosynthetic eukaryotes that today dominate the macroscopic flora: the land plants (Embryophyta). There is convincing evidence that the unicellular/filamentous Zygnematophyceae-and not the morphologically more elaborate Coleochaetophyceae or Charophyceae-are the closest algal relatives of land plants.
View Article and Find Full Text PDFThe colonization of land by ancestors of embryophyte plants was one of the most significant evolutionary events in the history of life on earth. The lack of a buffering aquatic environment necessitated adaptations for coping with novel abiotic challenges, particularly high light intensities and desiccation as well as the formation of novel anchoring structures. Bryophytes mark the transition from freshwater to terrestrial habitats and form adaptive features such as rhizoids for soil contact and water uptake, devices for gas exchange along with protective and repellent surface layers.
View Article and Find Full Text PDFAn ever-increasing number of intracellular multi-protein networks have been identified in plant cells. Split-GFP-based protein-protein interaction assays combine the advantages of interaction studies in a native environment with additional visualization of protein complex localization. Because of their simple protocols, they have become some of the most frequently used methods.
View Article and Find Full Text PDFLand plants with elaborated three-dimensional (3D) body plans have evolved from streptophyte algae. The streptophyte algae are known to exhibit varying degrees of morphological complexity, ranging from single-celled flagellates to branched macrophytic forms exhibiting tissue-like organization. In this review, I discuss mechanisms by which, during evolution, filamentous algae may have gained 2D and eventually 3D body plans.
View Article and Find Full Text PDFMany decisions made during plant development depend on the placement of the cytokinetic wall. Cytokinesis involves the biogenesis of the cell plate that progresses centrifugally and until the fusion of the cell plate with the parental cell wall. The phragmoplast facilitates the growth of the cell plate and directs it's insertion at the cell cortex by a mechanism known as phragmoplast guidance.
View Article and Find Full Text PDFMany plant mutants are known that exhibit some degree of helical growth. This 'twisted' phenotype has arisen frequently in mutant screens of model organisms, but it is also found in cultivars of ornamental plants, including trees. The phenomenon, in many cases, is based on defects in cell expansion symmetry.
View Article and Find Full Text PDFMougeotia scalaris is a filamentous streptophyte alga renowned for light-inducible plastid rotation and microtubule-dependent polarity establishment. As a first step toward transgenic approaches we determined the 5,825 base pair genomic sequence encoding the α-tubulin1 gene (MsTUA1) of M. scalaris (strain SAG 164.
View Article and Find Full Text PDFLand plants evolved from charophytic algae, among which Charophyceae possess the most complex body plans. We present the genome of Chara braunii; comparison of the genome to those of land plants identified evolutionary novelties for plant terrestrialization and land plant heritage genes. C.
View Article and Find Full Text PDFThis article comments on: 2018. Myosin XI-K is involved in root organogenesis, polar auxin transport and cell division. Journal of Experimental Botany , 2869–2881.
View Article and Find Full Text PDFTANGLED1 (TAN1) and AUXIN-INDUCED-IN-ROOTS9 (AIR9) are microtubule-binding proteins that localize to the division site in plants. Their function in Arabidopsis () remained unclear because neither nor single mutants have a strong phenotype. We show that double mutants have a synthetic phenotype consisting of short, twisted roots with disordered cortical microtubule arrays that are hypersensitive to a microtubule-depolymerizing drug.
View Article and Find Full Text PDFPlant cytokinesis is orchestrated by a specialized structure, the phragmoplast. The phragmoplast first occurred in representatives of Charophyte algae and then became the main division apparatus in land plants. Major cellular activities, including cytoskeletal dynamics, vesicle trafficking, membrane assembly, and cell wall biosynthesis, cooperate in the phragmoplast under the guidance of a complex signaling network.
View Article and Find Full Text PDFTrends Plant Sci
October 2016
The mechanism of cell division has undergone significant alterations during the evolution from aquatic streptophyte algae to land plants. Two new structures evolved, the cytokinetic phragmoplast and the preprophase band (PPB) of microtubules, whereas the ancestral mechanism of cleavage and the centrosomes disappeared. We map cell biological data onto the recently emerged phylogenetic tree of streptophytes.
View Article and Find Full Text PDFMethods Mol Biol
October 2016
The continuing analysis of plant cell division will require additional protein localization studies. This is greatly aided by GFP-technology, but plant transformation and the maintenance of transgenic lines can present a significant technical bottleneck. In this chapter I describe a method for the Agrobacterium-mediated genetic transformation of tobacco BY-2 cells.
View Article and Find Full Text PDFThe liverwort Marchantia employs both modern and ancestral devices during cell division: it forms preprophase bands and in addition it shows centrosome-like polar organizers. We investigated whether polar organizers and preprophase bands cooperate to set up the division plane. To this end, two novel green fluorescent protein-based microtubule markers for dividing cells of Marchantia were developed.
View Article and Find Full Text PDFPlant vascular cells, or tracheary elements (TEs), rely on circumferential secondary cell wall thickenings to maintain sap flow. The patterns in which TE thickenings are organized vary according to the underlying microtubule bundles that guide wall deposition. To identify microtubule interacting proteins present at defined stages of TE differentiation, we exploited the synchronous differentiation of TEs in Arabidopsis thaliana suspension cultures.
View Article and Find Full Text PDFThe preprophase band of microtubules performs the crucial function of marking the plane of cell division. Although the preprophase band depolymerises at the onset of mitosis, the division plane is 'memorized' by a cortical division zone to which the phragmoplast is attracted during cytokinesis. Proteins have been discovered that are part of the molecular memory but little is known about how they contribute to phragmoplast guidance.
View Article and Find Full Text PDFThe cytoskeleton is a dynamic network composed of filamentous polymers and regulatory proteins that provide a flexible structural scaffold to the cell and plays a fundamental role in developmental processes. Mutations that alter the spatial orientation of the cortical microtubule (MT) array of plants are known to cause important changes in the pattern of cell wall synthesis and developmental phenotypes; however, the consequences of such alterations on other MT-network-associated functions in the cytoplasm are not known. In vivo observations suggested a role of cortical MTs in the formation and movement of Tobacco mosaic virus (TMV) RNA complexes along the endoplasmic reticulum (ER).
View Article and Find Full Text PDFArabidopsis thaliana tortifolÃa2 carries a point mutation in α-tubulin 4 and shows aberrant cortical microtubule dynamics. The microtubule defect of tortifolia2 leads to overbranching and right-handed helical growth in the single-celled leaf trichomes. Here, we use tortifolia2 to further our understanding of microtubules in plant cell differentiation.
View Article and Find Full Text PDFLight and dark have antagonistic effects on shoot elongation, but little is known about how these effects are translated into changes of shape. Here we provide genetic evidence that the light/gibberellin-signaling pathway affects the properties of microtubules required to reorient growth. To follow microtubule dynamics for hours without triggering photomorphogenic inhibition of growth, we used Arabidopsis thaliana light mutants in the gibberellic acid/DELLA pathway.
View Article and Find Full Text PDF