Food Chem
February 2025
An efficient manufacturing of colorimetric nonwoven indicators represents a promising alternative to enable applications of such materials in food quality monitoring. The objective of this study is to use the solution blow spinning technique (SBS) to rapidly produce colorimetric nonwoven indicators based on polycaprolactone, incorporating natural or synthetic pH indicators to detect volatile amines, bacterial growth and monitor pH. Produced via the SBS method, these indicators were characterized aiming their physical, mechanical, thermal, and spectroscopic properties, evaluating their efficacy in detecting amines, monitoring bacterial growth, and pH, as well as assessing color stability during storage.
View Article and Find Full Text PDFFood Chem
November 2024
The shelf life of perishable foods is estimated through expensive and imprecise analyses that do not account for improper storage. Smart packaging, obtained by agile manufacturing of nanofibers functionalized with natural pigments from agri-food residues, presents promising potential for real-time food quality monitoring. This study employed the solution blow spinning (SBS) technique for the rapid production of smart nanofiber mats based on polycaprolactone (PCL), incorporating extracts of agricultural residues rich in anthocyanins from eggplant (EE) or purple cabbage (CE) for monitoring food quality.
View Article and Find Full Text PDFThe proper mix of nanocellulose to a dispersion of polar and nonpolar liquids creates emulsions stabilized by finely divided solids (instead of tensoactive chemicals) named Pickering emulsions. These mixtures can be engineered to develop new food products with innovative functions, potentially more eco-friendly characteristics, and reduced risks to consumers. Although cellulose-based Pickering emulsion preparation is an exciting approach to creating new food products, there are many legal, technical, environmental, and economic gaps to be filled through research.
View Article and Find Full Text PDFThere is growing interest in the use of natural bioactive compounds for the development of new bio-based materials for intelligent and active food packaging applications. Several beneficial effects have been associated with the antioxidant and antimicrobial potentials of carotenoid compounds. In addition, carotenoids are sensitive to pH changes and oxidation reactions, which make them useful bioindicators of food deterioration.
View Article and Find Full Text PDFInt J Biol Macromol
September 2023
Films and coatings manufactured with bio-based renewable materials, such as biopolymers and essential oils, could be a sustainable and eco-friendly alternative for protecting and preserving agricultural products. In this work, we developed films and coatings from pectin and chitosan to protect strawberries (Fragaria x ananassa Duch.) from spoilage and microbial contamination.
View Article and Find Full Text PDFInt J Biol Macromol
August 2023
Kefiran is a biomaterial with potential application in developing novel materials for food technology. In this study, sugarcane sugar (REF), raw sugar (RAS), brown sugar (BRS), soy molasses (SOM), and sugarcane molasses (SCM) were evaluated for the production of kefiran from kefir biomass rather than cow's milk (CMK), the usual medium. The produced kefiran was purified and characterized by colorimetry, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis, and morphology.
View Article and Find Full Text PDFPolymers (Basel)
November 2022
The environmental damage caused by plastic packaging and the need to reduce pollution requires actions to substitute plastic materials for more sustainable and biodegradable materials. Starch, gelatin, and bacterial cellulose films are three potential biodegradable polymeric films for use in packaging. However, these materials need improvements in their physical, chemical, and mechanical properties to be used in packaging.
View Article and Find Full Text PDFInt J Biol Macromol
October 2022
This study investigated the effects of bio-nanocomposite coatings developed using arrowroot starch (AA), cellulose nanocrystals (CNC), carnauba wax nanoemulsion (CWN), and Cymbopogon martinii and Mentha spicata essential oils (CEO and MEO, respectively) on the physicochemical, microbiological, bioactive, antioxidant, and aromatic characteristics of strawberries cv. 'Oso Grande' in refrigerated storage for 12 days. The coatings improved the shelf life and stability of strawberries, minimizing their weight loss (2.
View Article and Find Full Text PDFSnacks have accompanied people for a long time, meeting our needs for something fast and filling between meals. Societies and technologies have changed, and so have snacks, adapting to people's daily lives, concerns, and demands. Although traditional snacks, such as potato chips, are still ubiquitous and popular worldwide, there is not unanimity around them anymore, since many people have been looking for healthier snacks.
View Article and Find Full Text PDFInt J Biol Macromol
December 2021
Cold plasma is an innovative strategy to strengthen the polysaccharide-based films characteristics. This study evaluated the effects of dielectric barrier discharge (DBD) plasma on the hydrophilic character, water vapor permeability (WVP), and tensile properties of corn starch-based films. Starch films were exposed to plasma processing operating at an excitation frequency of 200 Hz for 10, 15, and 20 min.
View Article and Find Full Text PDFBackground: The COVID-19 crisis generated changes in consumer behavior related to food purchase and the management of food packaging. Due to the intensification of online purchases for home delivery, there has been an increase in the use of food packaging (mostly non-biodegradable or non-renewable). Moreover, the fear of contamination with SARS-CoV-2 through contact with materials and surfaces has led to an intensified disposal of food packaging, promoting a setback in waste management.
View Article and Find Full Text PDFAbstract: Cashew is a major crop in several tropical countries. Its cultivation is mostly aimed to the production of cashew nuts, whereas its byproducts (including cashew tree gum and cashew apples) are underutilized. In this study, cashew tree gum (CG) has been combined to nanofibrillated bacterial cellulose (NFBC) produced from cashew apple juice, at different ratios (from CG-only to NFBC-only), to produce edible films.
View Article and Find Full Text PDFInt J Biol Macromol
July 2021
The objective of this study was to prepare, for the first time, active films and coatings from fruit starch (SPFS) and phenolic stem bark extract (SBPE) from Spondias purpurea L. Starch film formulations were prepared with different SBPE contents (5-20 wt% on starch), then cast and dried into films. SBPE showed higher antioxidant activity and antimicrobial activity against both Gram-negative and Gram-positive bacteria.
View Article and Find Full Text PDFEdible kernels have been popular food items since ancient times. Although in-shell nuts are naturally protected and relatively shelf stable, convenience demands require their commercialization in shelled form. However, whereas shelled kernels are more convenient, they are more exposed to oxygen, and thus more susceptible to oxidative rancidity and loss of crunchiness, which negatively affect the product acceptability.
View Article and Find Full Text PDF