Skeletal muscle function crucially depends on innervation while repair of skeletal muscle relies on resident muscle stem cells (MuSCs). However, it is poorly understood how innervation affects MuSC properties and thereby regeneration of skeletal muscle. Here, we report that loss of innervation causes precocious activation of MuSCs concomitant with the expression of markers of myogenic differentiation.
View Article and Find Full Text PDFFront Mol Neurosci
February 2024
Guanosine diphosphate-mannose pyrophosphorylase B (GMPPB) catalyzes the conversion of mannose-1-phosphate and GTP to GDP-mannose, which is required as a mannose donor for the biosynthesis of glycan structures necessary for proper cellular functions. Mutations in GMPPB have been associated with various neuromuscular disorders such as muscular dystrophy and myasthenic syndromes. Here, we report that GMPPB protein abundance increases during brain and skeletal muscle development, which is accompanied by an increase in overall protein mannosylation.
View Article and Find Full Text PDFRhabdomyosarcoma is the most common pediatric soft tissue tumor, comprising two major subtypes: the PAX3/7-FOXO1 fusion-negative embryonal and the PAX3/7-FOXO1 fusion-positive alveolar subtype. Here, we demonstrate that the expression levels of the transcriptional repressor TRPS1 are specifically enhanced in the embryonal subtype, resulting in impaired terminal myogenic differentiation and tumor growth. During normal myogenesis, expression levels of TRPS1 have to decrease to allow myogenic progression, as demonstrated by overexpression of TRPS1 in myoblasts impairing myotube formation.
View Article and Find Full Text PDFGDP-mannose-pyrophosphorylase-B (GMPPB) facilitates the generation of GDP-mannose, a sugar donor required for glycosylation. GMPPB defects cause muscle disease due to hypoglycosylation of α-dystroglycan (α-DG). Alpha-DG is part of a protein complex, which links the extracellular matrix with the cytoskeleton, thus stabilizing myofibers.
View Article and Find Full Text PDFAdult skeletal muscle tissue harbors a stem cell population that is indispensable for its ability to regenerate. Upon muscle damage, muscle stem cells leave their quiescent state and activate the myogenic program ultimately leading to the repair of damaged tissue concomitant with the replenishment of the muscle stem cell pool. Various factors influence muscle stem cell activity, among them intrinsic stimuli but also signals from the direct muscle stem cell environment, the stem cell niche.
View Article and Find Full Text PDFAging is characterized by a progressive decline in tissue and organ function often linked to a reduced stem cell functionality, a cell population important for regeneration. Skeletal muscle mass and regenerative capacity decrease with advancing age. Muscle stem cells, also termed satellite cells, are a prerequisite for regeneration of skeletal muscle.
View Article and Find Full Text PDFSkeletal muscle possesses an enormous capacity to regenerate after injury. This process is mainly driven by muscle stem cells, also termed satellite cells. Satellite cells are characterized by the expression of the transcription factor Pax7 and their location underneath the basal lamina in the resting skeletal muscle.
View Article and Find Full Text PDFAn Amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFThe isolation and culture of single floating myofibers with their adjacent muscle stem cells allow the analysis and comparison of muscle stem cells from aged and young mice. This method has the advantage that muscle stem cells are cultured on the myofiber, thereby culturing them in conditions as close to their endogenous niche as possible. Here we describe the isolation, culture, transfection with siRNA, and subsequent immunostaining for muscle stem cells on their adjacent myofibers from aged and young mice.
View Article and Find Full Text PDFThe functionality of stem cells declines during ageing, and this decline contributes to ageing-associated impairments in tissue regeneration and function. Alterations in developmental pathways have been associated with declines in stem-cell function during ageing, but the nature of this process remains poorly understood. Hox genes are key regulators of stem cells and tissue patterning during embryogenesis with an unknown role in ageing.
View Article and Find Full Text PDF