Background: TLN-4601 is a structurally novel farnesylated dibenzodiazepinone discovered using Thallion's proprietary DECIPHER® technology, a genomics and bioinformatics platform that predicts the chemical structures of secondary metabolites based on gene sequences obtained by scanning bacterial genomes. Our recent studies suggest that TLN-4601 inhibits the Ras-ERK MAPK pathway post Ras prenylation and prior to MEK activation. The Ras-ERK MAPK signaling pathway is a well-validated oncogenic cascade based on its central role in regulating the growth and survival of cells from a broad spectrum of human tumors.
View Article and Find Full Text PDFTLN-4601 is a structurally novel farnesylated dibenzodiazepinone discovered through DECIPHER, Thallion's proprietary drug discovery platform. The compound was shown to have a broad cytotoxic activity (low micromol/l) when tested in the NCI 60 tumor cell line panel and has shown in-vivo antitumor activity in several xenograft models. Related to its farnesylated moiety, the effect of TLN-4601 on Ras mitogen-activated protein kinase signaling was assessed.
View Article and Find Full Text PDFThe deposited strain of the hazimicin producer, Micromonospora echinospora ssp. challisensis NRRL 12255 has considerable biosynthetic capabilities as revealed by genome scanning. Among these is a locus containing both type I and type II PKS genes.
View Article and Find Full Text PDFAs a continuation of our efforts to discover and develop the apoptosis inducing 4-aryl-4H-chromenes as potential anticancer agents, we explored the removal of the chiral center at the 4-position and prepared a series of 4-aryl-2-oxo-2H-chromenes. It was found that, in general, removal of the chiral center and replacement of the 2-amino group with a 2-oxo group were tolerated and 4-aryl-2-oxo-2H-chromenes exhibited SAR similar to 4-aryl-2-amino-4H-chromenes. The 4-aryl-2-oxo-2H-chromenes with a N-methyl pyrrole fused at the 7,8-positions were highly active with compound 2a having an EC(50) value of 13 nM in T47D cells.
View Article and Find Full Text PDFIn our continuing effort to discover and develop apoptosis inducing 4-aryl-4H-chromenes as novel anticancer agents, we explored the structure-activity relationship (SAR) of alkyl substituted pyrrole fused at the 7,8-positions. A methyl group substituted at the nitrogen in the 7-position of the pyrrole ring led to a series of potent apoptosis inducers with potency in the low nanomolar range. These compounds were also found to be low nanomolar or subnanomolar inhibitors of cell growth, and they inhibited tubulin polymerization, indicating that methylation of the 7-position nitrogen does not change the mechanism of action of these chromenes.
View Article and Find Full Text PDFAs a continuation of our efforts to discover and develop apoptosis inducing 4-aryl-4H-chromenes as novel anticancer agents, we explored modifications at the 2- and 3-positions. It was found that replacement of the 3-cyano group by an ester, including methyl and ethyl ester, resulted in >200-fold reduction of activity. Conversion of the 2-amino group into an amide or urea resulted in 4- to 10-fold drop of activity.
View Article and Find Full Text PDFPurpose: ECO-4601 is a structurally novel farnesylated dibenzodiazepinone discovered through DECIPHER technology, Thallion's proprietary drug discovery platform. The compound was shown to have a broad cytotoxic activity in the low micromolar range when tested in the NCI 60 cell line panel. In the work presented here, ECO-4601 was further evaluated against brain tumor cell lines.
View Article and Find Full Text PDFBackground: Gemcitabine, a deoxycytidine nucleoside analog, is the current standard chemotherapy used as first-line treatment for patients with locally advanced or metastatic cancer of the pancreas, and extends life survival by 5.7 months. Advanced pancreatic cancer thus remains a highly unmet medical need and new therapeutic agents are required for this patient population.
View Article and Find Full Text PDFAs a continuation of our efforts to discover and develop the apoptosis-inducing 4-aryl-4H-chromenes as novel anticancer agents, we explored the SAR of fused rings at the 7,8-positions. It was found that a five-member aromatic ring, such as pyrrolo with nitrogen at either the 7- or 9-position, is preferred. A six-member aromatic ring, such as benzo or pyrido, also led to potent compounds.
View Article and Find Full Text PDFPurpose: Cluster-of-differentiation antigen 9 (CD9) protein, a member of the tetraspanin family, has been implicated in carcinogenesis of various human tumors. Although decreased expression of the CD82 tetraspanin protein, a close CD9 relative, is associated with prostate cancer progression, CD9 expression has not been analyzed in this malignancy.
Experimental Design: CD9 expression in human prostatic adenocarcinoma was analyzed by immunohistochemistry on 167 primary tumors and 88 lymph node or bone metastases.
As a continuation of our efforts to discover and develop the apoptosis inducing 4-aryl-4H-chromenes as novel anticancer agents, we explored the SAR of 4-aryl-4H-chromenes with modifications at the 7- and 5-, 6-, 8-positions. It was found that a small hydrophobic group, such as NMe2, NH2, NHEt, and OMe, is preferred at the 7-position. Di-substitution at either the 5,7-positions or the 6,7-positions generally led to a large decrease in potency.
View Article and Find Full Text PDFPurpose: Troxacitabine is the first unnatural L-nucleoside analog to show potent preclinical antitumor activity and is currently under clinical investigation. Significant differences in troxacitabine toxicity between mice, rats, monkeys, and humans were observed during preclinical and clinical evaluations. To better understand the different toxicity and efficacy results observed between the human xenograft mouse tumor models used for preclinical assessment and the clinical study results, the pharmacodynamics and pharmacokinetics of troxacitabine were reassessed in murine and human models.
View Article and Find Full Text PDFBy applying a novel cell- and caspase-based HTS assay, 2-amino-3-cyano-7-(dimethylamino)-4-(3-methoxy-4,5-methylenedioxyphenyl)-4H-chromene (1a) has been identified as a potent apoptosis inducer. Compound 1a was found to induce nuclear fragmentation and PARP cleavage, as well as to arrest cells at the G(2)/M stage and to induce apoptosis as determined by the flow cytometry analysis assay in multiple human cell lines (e.g.
View Article and Find Full Text PDFA novel series of 2-amino-4-(3-bromo-4,5-dimethoxy-phenyl)-3-cyano-4H-chromenes was identified as potent apoptosis inducers through a cell-based high throughput screening assay. Six compounds from this series, MX-58151, MX-58276, MX-76747, MX-116214, MX-116407, and MX-126303, were further profiled and shown to have potent in vitro cytotoxic activity toward proliferating cells only and to interact with tubulin at the colchicine-binding site, thereby inhibiting tubulin polymerization and leading to cell cycle arrest and apoptosis. Furthermore, these compounds were shown to disrupt newly formed capillary tubes in vitro at low nanomolar concentrations.
View Article and Find Full Text PDFA novel series of 2-amino-4-(3-bromo-4,5-dimethoxy-phenyl)-3-cyano-4H-chromenes was identified as apoptosis-inducing agents through our cell-based apoptosis screening assay. Several analogues from this series, MX-58151, MX-58276, MX-76747, MX-116214, MX-126303, and MX-116407, were synthesized and further characterized. MX-116407, a lead compound from this series, induced apoptosis with an EC50 of 50 nmol/L and inhibited cell growth with a GI50 of 37 nmol/L in T47D breast cancer cells.
View Article and Find Full Text PDFNucleoside analogues are commonly used in the treatment of hematological malignancies and solid tumors. As antimetabolites, these drugs act by disrupting DNA synthesis and inducing apoptosis following their incorporation into DNA. Troxacitabine (Troxatyl) is the first nucleoside analogue with anticancer activity that has an unnatural stereochemical configuration.
View Article and Find Full Text PDFTroxacitabine (beta-L-Dioxolane-cytidine; Troxatyl) is a beta-L-nucleoside analog, which has shown preclinical antitumor activity in human xenograft tumor models and antileukemic response in patients with relapsed myeloid leukemia. Troxacitabine is activated by cellular kinases and incorporated into DNA, inhibiting its replication. In contrast to other cytosine nucleoside analogs, troxacitabine is resistant to inactivation by cytidine deaminase (CD).
View Article and Find Full Text PDFThe in vitro and in vivo activity of a deoxycytidine analogue, troxacitabine, alone or in combination with imatinib mesylate (IM), was evaluated against human chronic myeloid leukaemia (CML) cell lines both sensitive (KBM5 and KBM7) and resistant (KBM5-R and KBM7-R) to IM. These cell lines differ in their sensitivity to IM but all showed similar sensitivity to treatment with troxacitabine (IC50 = 0.5-1 micromol/l).
View Article and Find Full Text PDFPurpose: Troxacitabine (BCH-4556, l-(-)-OddC, Troxatyl) is a novel beta- l-nucleoside analogue with potent antineoplastic activity both in vitro and in several tumor models in vivo, and is presently in phase II clinical trials. The combination of the cytosine analogues troxacitabine and araC (1-beta- d-arabinofuranosylcytosine, cytarabine) has shown promising activity in patients with acute myelogenous leukemia. To further examine the interactions between these two analogues, we investigated the in vitro and in vivo effects of their combination against a human leukemia cell line, CCRF-CEM.
View Article and Find Full Text PDFIntegrin-mediated cell adhesion is necessary for endothelial cell proliferation and apoptosis, which is a major determinant in tumor-induced angiogenesis. In this study, we compared two novel, structurally similar, Arg-Gly-Asp (RGD) peptidomimetic compounds having different integrin selectivities, for their inhibition of endothelial cell proliferation and induction of apoptosis on functionally relevant extracellular matrices (ECM) for angiogenesis. BCH-14661 was specific for integrin alphavbeta3, whereas BCH-15046 nonselectively antagonized integrins alphavbeta3, alphavbeta5, and alpha5beta1.
View Article and Find Full Text PDFNucleoside phosphonates are widely used therapeutic agents with a broad spectrum of antiviral activity. However, only a few of them are reported to have antitumor activity. In this study, we show that a tetrahydrofuran phosphonate analogue of guanosine, (-)-2-R-dihydroxyphosphinoyl-5-(S)-(guanin-9'-ylmethyl) tetrahydrofuran (BCH-1868), previously reported as having antiviral activity, also displays antitumor activity.
View Article and Find Full Text PDFCancer Chemother Pharmacol
December 2002
Purpose: We have recently identified a deoxycytidine nucleoside analogue, troxacitabine (beta- L-dioxolane cytidine, Troxatyl; Shire BioChem), which has potent antitumor activity against both leukemia and solid tumors. In contrast to the cytidine nucleoside analogues currently in clinical use (cytarabine and gemcitabine), troxacitabine is a poor substrate of nucleoside transporters and enters cells primarily by passive diffusion. This unusual property led us to evaluate the efficacy of troxacitabine in multidrug resistant (MDR) and multidrug resistance-associated protein (MRP) tumors.
View Article and Find Full Text PDF