malaria is a global health problem. Erythrocyte invasion by merozoites appears to be a promising target to curb malaria. We have identified and characterized a novel protein that is involved in erythrocyte invasion.
View Article and Find Full Text PDFNearly half of the genes in the genome have not yet been functionally investigated. We used homology-based structural modeling to identify multiple copies of Armadillo repeats within one uncharacterized gene expressed during the intraerythrocytic stages, PF3D7_0410600, subsequently referred to as Armadillo-Type Repeat Protein (PfATRP). Soluble recombinant PfATRP was expressed in a bacterial expression system, purified to apparent homogeneity and the identity of the recombinant PfATRP was confirmed by mass spectrometry.
View Article and Find Full Text PDFBackground: uses a repertoire of merozoite-stage proteins for invasion of erythrocytes. Antibodies against some of these proteins halt the replication cycle of the parasite by preventing erythrocyte invasion and are implicated as contributors to protective immunity against malaria.
Methods: We assayed antibody reactivity against a panel of 9 recombinant antigens based on erythrocyte-binding antigen (EBA) and reticulocyte-like homolog (Rh) proteins in plasma from children with malaria and healthy adults residing in 3 endemic areas in Ghana using enzyme-linked immunosorbent assay.
Plasmodium falciparum erythrocyte invasion is a multistep process that involves a spectrum of interactions that are not well characterized. We have characterized a 113-kDa immunogenic protein, PF3D7_1431400 (PF14_0293), that possesses coiled-coil structures. The protein is localized on the surfaces of both merozoites and gametocytes, hence the name Plasmodium falciparum surface-related antigen (PfSRA).
View Article and Find Full Text PDFBackground: Malaria control interventions have led to a decline in transmission intensity in many endemic areas, and resulted in elimination in some areas. This decline, however, will lead to delayed acquisition of protective immunity and thus impact disease manifestation and outcomes. Therefore, the variation in clinical and haematological parameters in children with malaria was assessed across three areas in Ghana with varying transmission intensities.
View Article and Find Full Text PDFPlasmodium falciparum merozoites use diverse alternative erythrocyte receptors for invasion and variably express cognate ligands encoded by the erythrocyte binding antigen (eba) and reticulocyte binding-like homologue (Rh) gene families. Previous analyses conducted on parasites from single populations in areas of endemicity revealed a wide spectrum of invasion phenotypes and expression profiles, although comparisons across studies have been limited by the use of different protocols. For direct comparisons within and among populations, clinical isolates from three different West African sites of endemicity (in Ghana, Guinea, and Senegal) were cryopreserved and cultured ex vivo after thawing in a single laboratory to assay invasion of target erythrocytes pretreated with enzymes affecting receptor subsets.
View Article and Find Full Text PDFBackground: Plasmodium falciparum invades human erythrocytes by using an array of ligands that interact with several receptors, including sialic acid (SA), complement receptor 1 (CR1), and basigin. We hypothesized that in malaria-endemic areas, parasites vary invasion pathways under immune pressure. Therefore, invasion mechanisms of clinical isolates collected from 3 zones of Ghana with different levels of endemicity (from lowest to highest, Accra, Navrongo, and Kintampo) were compared using standardized methods.
View Article and Find Full Text PDFBackground: Malaria continues to be a global health challenge, affecting more than half the world's population and causing approximately 660,000 deaths annually. The majority of malaria cases are caused by Plasmodium falciparum and occur in sub-Saharan Africa. One of the major complications asscociated with malaria is severe anaemia, caused by a cycle of haemoglobin digestion by the parasite.
View Article and Find Full Text PDF