Nonhuman primates are frequently transported to a new location or temporarily relocated within their colony. Both transportation and relocation expose animals to new environments, causing them to undergo a stress response (before adapting). In our NHP colony, the mentioned situations are not infrequent for many reasons, including maintenance.
View Article and Find Full Text PDFAlzheimer's disease is the most common cause of dementia and the only illness among the top 10 causes of death for which there is no disease-modifying therapy. The failure rate of clinical trials is very high, in part due to the premature translation of successful results in transgenic mouse models to patients. Extensive evidence suggests that dysregulation of innate immunity and microglia/macrophages plays a key role in Alzheimer's disease pathogenesis.
View Article and Find Full Text PDFAlzheimers Dement (Amst)
August 2020
Two of the key functions of arteries in the brain are (1) the well-recognized supply of blood via the vascular lumen and (2) the emerging role for the arterial walls as routes for the elimination of interstitial fluid (ISF) and soluble metabolites, such as amyloid beta (Aβ), from the brain and retina. As the brain and retina possess no conventional lymphatic vessels, fluid drainage toward peripheral lymph nodes is mediated via transport along basement membranes in the walls of capillaries and arteries that form the intramural peri-arterial drainage (IPAD) system. IPAD tends to fail as arteries age but the mechanisms underlying the failure are unclear.
View Article and Find Full Text PDFOne means of stimulating the mammalian innate immune system is Toll-like receptor 9 (TLR9) being exposed to unmethylated cytosine-phosphate-guanine (CpG) DNA, also known as pathogen-associated molecular patterns (PAMPs) of microbial origin. Synthetic CpG oligodeoxynucleotides (ODNs) with defined CpG motifs possess broad immunostimulatory properties that make CpG ODNs suitable as therapeutic interventions in a variety of human disease conditions, including Alzheimer's disease (AD). Rodent models are often used to preclinically test the effectiveness of CpG ODN therapeutic agents for AD and other disorders.
View Article and Find Full Text PDFWhite matter hyperintensities (WMHs) are frequently seen on brain magnetic resonance imaging scans of older people. Usually interpreted clinically as a surrogate for cerebral small vessel disease, WMHs are associated with increased likelihood of cognitive impairment and dementia (including Alzheimer's disease [AD]). WMHs are also seen in cognitively healthy people.
View Article and Find Full Text PDFCellular immune responses were tested to determine the effect of fenbendazole on the function of lymphocytes from Bolivian squirrel monkeys (Samiri boliviensis boliviensis). Giardia-infected squirrel monkeys were treated with commercially available fenbendazole (FBZ)-medicated monkey chow. Immune responses were compared between historical controls (Giardia naïve, untreated with FBZ (control animals)) and Giardia-infected, FBZ-treated squirrel monkeys (study animals).
View Article and Find Full Text PDFThere is growing genetic and proteomic data highlighting the complexity of Alzheimer's disease (AD) pathogenesis. Greater use of unbiased "omics" approaches is being increasingly recognized as essential for the future development of effective AD research, that need to better reflect the multiple distinct pathway abnormalities that can drive AD pathology. The track record of success in AD clinical trials thus far has been very poor.
View Article and Find Full Text PDFInheritance of the apolipoprotein E4 (apoE4) genotype has been identified as the major genetic risk factor for late onset Alzheimer's disease (AD). Studies have shown that apoE, apoE4 in particular, binds to amyloid-β (Aβ) peptides at residues 12-28 of Aβ and this binding modulates Aβ accumulation and disease progression. We have previously shown in several AD transgenic mice lines that blocking the apoE/Aβ interaction with Aβ12-28 P reduced Aβ and tau-related pathology, leading to cognitive improvements in treated AD mice.
View Article and Find Full Text PDFUnlabelled: Alzheimer's disease (AD) is characterized by the presence of parenchymal amyloid-β (Aβ) plaques, cerebral amyloid angiopathy (CAA) and neurofibrillary tangles. Currently there are no effective treatments for AD. Immunotherapeutic approaches under development are hampered by complications related to ineffectual clearance of CAA.
View Article and Find Full Text PDFJ Alzheimers Dis Parkinsonism
November 2014
Alzheimer's disease (AD) is the leading cause of dementia worldwide. Late-onset AD (LOAD), is the most common form of Alzheimer's disease, representing about >95% of cases and early-onset AD represents <5% of cases. Several risk factors have been discovered that are associated with AD, with advancing age being the most prominent.
View Article and Find Full Text PDFActa Neuropathol Commun
September 2014
Alzheimer's disease (AD) is the most common cause of dementia, and currently, there is no effective treatment. The major neuropathological lesions in AD are accumulation of amyloid β (Aβ) as amyloid plaques and congophilic amyloid angiopathy, as well as aggregated tau in the form of neurofibrillary tangles (NFTs). In addition, inflammation and microglia/macrophage function play an important role in AD pathogenesis.
View Article and Find Full Text PDFInheritance of the apolipoprotein E4 (apoE4) genotype has been identified as the major genetic risk factor for late-onset Alzheimer's disease (AD). Studies have shown that the binding between apoE and amyloid-β (Aβ) peptides occurs at residues 244-272 of apoE and residues 12-28 of Aβ. ApoE4 has been implicated in promoting Aβ deposition and impairing clearance of Aβ.
View Article and Find Full Text PDFMany neurodegenerative diseases are characterized by the conformational change of normal self-proteins into amyloidogenic, pathological conformers, which share structural properties such as high β-sheet content and resistance to degradation. The most common is Alzheimer's disease (AD) where the normal soluble amyloid β (sAβ) peptide is converted into highly toxic oligomeric Aβ and fibrillar Aβ that deposits as neuritic plaques and congophilic angiopathy. Currently, there is no highly effective treatment for AD, but immunotherapy is emerging as a potential disease modifying intervention.
View Article and Find Full Text PDFThe pathogenesis of prion diseases is related to conformational transformation of cellular prion protein (PrP(C)) into a toxic, infectious, and self-replicating conformer termed PrP(Sc). Following extracerebral inoculation, the replication of PrP(Sc) is confined for months to years to the lymporeticular system (LRS) before the secondary CNS involvement results in occurrence of neurological symptoms. Therefore, replication of PrP(Sc), in the early stage of infection can be targeted by therapeutic approaches, which like passive immunization have limited blood-brain-barrier penetration.
View Article and Find Full Text PDFThe pathogenesis of Alzheimer's disease (AD) is thought to be related to the accumulation of amyloid beta (Abeta) in amyloid deposits and toxic oligomeric species. Immunomodulation is emerging as an effective means of shifting the equilibrium from Abeta accumulation to clearance; however, excessive cell mediated inflammation and cerebral microhemorrhages are two forms of toxicity which can occur with this approach. Vaccination studies have so far mainly targeted the adaptive immune system.
View Article and Find Full Text PDFMemantine, an N-methyl-D-aspartate (NMDA) receptor antagonist, has been shown to improve learning and memory in several preclinical models of Alzheimer's disease (AD). Memantine has also been shown to reduce the levels of amyloid beta (A beta) peptides in human neuroblastoma cells as well as to inhibit A beta oligomer-induced synaptic loss. In this study, we assessed whether NMDA receptor inhibition by memantine in transgenic mice expressing human amyloid-beta precursor protein (APP) and presenilin 1 (PS1) is associated with cognitive benefit and amyloid burden reduction by using object recognition, micromagnetic resonance imaging (micro MRI), and histology.
View Article and Find Full Text PDFAmyloid plaques are a characteristic feature in Alzheimer's disease (AD). A novel non-toxic contrast agent is presented, Gd-DTPA-K6Abeta1-30, which is homologous to Abeta, and allows plaque detection in vivo. microMRI was performed on AD model mice and controls prior to and following intracarotid injection with Gd-DTPA-K6Abeta1-30 in mannitol solution, to transiently open the blood-brain barrier.
View Article and Find Full Text PDFThe amyloid-beta (Abeta) cascade hypothesis of Alzheimer's disease (AD) maintains that accumulation of Abeta peptide constitutes a critical event in the early disease pathogenesis. The direct binding between Abeta and apolipoprotein E (apoE) is an important factor implicated in both Abeta clearance and its deposition in the brain's parenchyma and the walls of meningoencephalic vessels as cerebral amyloid angiopathy. With the aim of testing the effect of blocking the apoE/Abeta interaction in vivo as a potential novel therapeutic target for AD pharmacotherapy, we have developed Abeta12-28P, which is a blood-brain-barrier-permeable nontoxic, and nonfibrillogenic synthetic peptide homologous to the apoE binding site on the full-length Abeta.
View Article and Find Full Text PDFImmunotherapy holds great promise for Alzheimer's disease (AD) and other conformational disorders but certain adverse reactions need to be overcome. The meningoencephalitis observed in the first AD vaccination trial was likely related to excessive cell-mediated immunity caused by the immunogen, amyloid-beta (Abeta) 1-42, and the adjuvant, QS-21. To avoid this toxicity, we have been using Abeta derivatives in alum adjuvant that promotes humoral immunity.
View Article and Find Full Text PDFAlzheimer's disease (AD) is associated with accumulation of beta-amyloid (Abeta). A major genetic risk factor for sporadic AD is inheritance of the apolipoprotein (apo) E4 allele. ApoE can act as a pathological chaperone of Abeta, promoting its conformational transformation from soluble Abeta into toxic aggregates.
View Article and Find Full Text PDFIn Alzheimer disease (AD) patients, early memory dysfunction is associated with glucose hypometabolism and neuronal loss in the hippocampus. Double transgenic (Tg) mice co-expressing the M146L presenilin 1 (PS1) and K670N/M671L, the double "Swedish" amyloid precursor protein (APP) mutations, are a model of AD amyloid-beta deposition (Abeta) that exhibits earlier and more profound impairments of working memory and learning than single APP mutant mice. In this study we compared performance on spatial memory tests, regional glucose metabolism, Abeta deposition, and neuronal loss in APP/PS1, PS1, and non-Tg (nTg) mice.
View Article and Find Full Text PDFThe major neuropathological lesions defining Alzheimer's disease (AD) include neurofibrillary tangles and amyloid plaques, which are mainly composed of abnormally phosphorylated tau and amyloid-beta (A beta), respectively. Numerous neuropathological and neuroimaging studies indicate that at least one-third of AD cases are complicated by some degree of vascular pathology, whereas in a similar proportion of patients clinically diagnosed with vascular dementia, AD pathology is also present. Many classical vascular risk factors such as hypertension, diabetes mellitus, and hypercholesterolemia have recently been shown also to increase the risk of AD.
View Article and Find Full Text PDFThe prion protein (PrP) binds copper and under some conditions copper can facilitate its folding into a more protease resistant form. Hence, copper levels may influence the infectivity of the scrapie form of prion protein (PrPSc). To determine the feasibility of copper-targeted therapy for prion disease, we treated mice with a copper chelator, D-(-)-penicillamine (D-PEN), starting immediately following intraperitoneal scrapie inoculation.
View Article and Find Full Text PDFThe presence of amyloid-beta (Abeta) plaques in the brain is a hallmark pathological feature of Alzheimer's disease (AD). Transgenic mice overexpressing mutant amyloid precursor protein (APP), or both mutant APP and presenilin-1 (APP/PS1), develop Abeta plaques similar to those in AD patients, and have been proposed as animal models in which to test experimental therapeutic approaches for the clearance of Abeta. However, at present there is no in vivo whole-brain imaging method to detect Abeta plaques in mice or men.
View Article and Find Full Text PDF