We employ Onsager's second virial density functional theory combined with the Parsons-Lee theory within the restricted orientation (Zwanzig) approximation to examine the phase structure of hard square boards of dimensions (L×D×D) uniaxially confined in narrow slabs. Depending on the wall-to-wall separation (H), we predict a number of distinctly different capillary nematic phases, including a monolayer uniaxial or biaxial planar nematic, homeotropic with a variable number of layers, and a T-type structure. We determine that the favored phase is homotropic, and we observe first-order transitions from the homeotropic structure with n layers to n+1 layers as well as from homeotropic surface anchoring to a monolayer planar or T-type structure involving both planar and homeotropic anchoring at the pore surface.
View Article and Find Full Text PDFWe use the Parsons-Lee modification of Onsager's second virial theory within the restricted orientation (Zwanzig) approximation to analyze the phase behavior of hard cylindrical rods confined in narrow pores. Depending on the wall-to-wall separation we predict a number of distinctly different surface-generated nematic phases, including a biaxial planar nematic with variable number of layers, a monolayer homeotropic, and a hybrid T-type structure (a planar layer combined with a homeotropic one). For narrow pores, we find evidence of two types of second-order uniaxial-biaxial transitions depending on the aspect ratio of the particles.
View Article and Find Full Text PDF