Publications by authors named "Henricsson M"

Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a global epidemic. MASLD has a strong genetic component, and a common missense variant (rs2642438) in the mitochondrial amidoxime-reducing component 1 (MARC1) gene confers protection against its onset and severity. However, there are contrasting results regarding the mechanisms entangling this protection.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease has emerged as a leading global cause of chronic liver disease. Our recent translational investigations have shown that the STE20-type kinases comprising the GCKIII subfamily-MST3, STK25, and MST4-associate with hepatic lipid droplets and regulate ectopic fat storage in the liver; however, the mode of action of these proteins remains to be resolved. By comparing different combinations of the silencing of MST3, STK25, and/or MST4 in immortalized human hepatocytes, we found that their single knockdown results in a similar reduction in hepatocellular lipid content and metabolic stress, without any additive or synergistic effects observed when all three kinases are simultaneously depleted.

View Article and Find Full Text PDF

Background: Bariatric surgery is an effective treatment option for obesity and provides long-term weight loss and positive effects on metabolism, but the underlying mechanisms are poorly understood. Alterations in bile acid metabolism have been suggested as a potential contributing factor, but comprehensive studies in humans are lacking.

Methods: In this study, we analysed the postprandial responses of bile acids, C4 and FGF19 in plasma, and excretion of bile acids in faeces, before and after bariatric surgery in patients (n = 38; 74% females) with obesity with or without type 2 diabetes from the BARIA cohort.

View Article and Find Full Text PDF

Background And Aims: Bile acids (BA) are vital regulators of metabolism. BAs are AQ6 secreted in the small intestine, reabsorbed, and transported back to the liver, where they can modulate metabolic functions. There is a paucity of data regarding the portal BA composition in humans.

View Article and Find Full Text PDF

To investigate how the fatty acid composition of brain phospholipids influences brain-specific processes, we leveraged the AdipoR2 (adiponectin receptor 2) knockout mouse model in which the brain is enlarged, and cellular membranes are excessively rich in saturated fatty acids. Lipidomics analysis of brains at 2, 7, and 18 months of age showed that phosphatidylcholines, which make up about two-thirds of all cerebrum membrane lipids, contain a gross excess of saturated fatty acids in AdipoR2 knockout mice, and that this is mostly attributed to an excess palmitic acid (C16:0) at the expense of oleic acid (C18:1), consistent with a defect in fatty acid desaturation and elongation in the mutant. Specifically, there was a ~12% increase in the overall saturated fatty acid content within phosphatidylcholines and a ~30% increase in phosphatidylcholines containing two palmitic acids.

View Article and Find Full Text PDF

Alterations in gut microbiota composition are suggested to contribute to cardiometabolic diseases, in part by producing bioactive molecules. Some of the metabolites are produced by very low abundant bacterial taxa, which largely have been neglected due to limits of detection. However, the concentration of microbially produced metabolites from these taxa can still reach high levels and have substantial impact on host physiology.

View Article and Find Full Text PDF

Insulin-PI3K signaling controls insulin secretion. Understanding this feedback mechanism is crucial for comprehending how insulin functions. However, the role of adipocyte insulin-PI3K signaling in controlling insulin secretion in vivo remains unclear.

View Article and Find Full Text PDF

The cellular membrane in male meiotic germ cells contains a unique class of phospholipids and sphingolipids that is required for male reproduction. Here, we show that a conserved membrane fluidity sensor, AdipoR2, regulates the meiosis-specific lipidome in mouse testes by promoting the synthesis of sphingolipids containing very-long-chain polyunsaturated fatty acids (VLC-PUFAs). AdipoR2 upregulates the expression of a fatty acid elongase, ELOVL2, both transcriptionally and post-transcriptionally, to synthesize VLC-PUFA.

View Article and Find Full Text PDF

Immunological control of viral infections in the brain exerts immediate protection and also long-term maintenance of brain integrity. Microglia are important for antiviral defense in the brain. Here, we report that herpes simplex virus type 1 (HSV1) infection of human induced pluripotent stem cell (hiPSC)-derived microglia down-regulates expression of genes in the TREM2 pathway.

View Article and Find Full Text PDF

The human AdipoR2 and its Caenorhabditis elegans homolog PAQR-2 are multipass plasma membrane proteins that protect cells against membrane rigidification. However, how AdipoR2 promotes membrane fluidity mechanistically is not clear. Using 13C-labeled fatty acids, we show that AdipoR2 can promote the elongation and incorporation of membrane-fluidizing polyunsaturated fatty acids into phospholipids.

View Article and Find Full Text PDF

Background: Over the past years, it has become clear that the microbial ecosystem in the gut has a profound capacity to interact with the host through the production of a wide range of bioactive metabolites. The microbially produced metabolite imidazole propionate (ImP) is clinically and mechanistically linked with insulin resistance and type 2 diabetes, but it is unclear how ImP is associated with heart failure.

Objectives: The authors aimed to explore whether ImP is associated with heart failure and mortality.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) is an immune-mediated demyelinating disorder of the central nervous system. The glycosphingolipid sulfatide, a lipid particularly enriched in the myelin sheath, has been shown to be involved the maintenance of this specific membrane structure. Sulfatide in cerebrospinal fluid (CSF) may reflect demyelination, a dominating feature of MS.

View Article and Find Full Text PDF

Aims: Pro-protein convertase subtilisin-kexin type 9 (PCSK9), which is expressed mainly in the liver and at low levels in the heart, regulates cholesterol levels by directing low-density lipoprotein receptors to degradation. Studies to determine the role of PCSK9 in the heart are complicated by the close link between cardiac function and systemic lipid metabolism. Here, we sought to elucidate the function of PCSK9 specifically in the heart by generating and analysing mice with cardiomyocyte-specific Pcsk9 deficiency (CM-Pcsk9-/- mice) and by silencing Pcsk9 acutely in a cell culture model of adult cardiomyocyte-like cells.

View Article and Find Full Text PDF

The adult heart develops hypertrophy to reduce ventricular wall stress and maintain cardiac function in response to an increased workload. Although pathological hypertrophy generally progresses to heart failure, physiological hypertrophy may be cardioprotective. Cardiac-specific overexpression of the lipid-droplet protein perilipin 5 (Plin5) promotes cardiac hypertrophy, but it is unclear whether this response is beneficial.

View Article and Find Full Text PDF

Abnormal branched-chained amino acids (BCAA) accumulation in cardiomyocytes is associated with cardiac remodeling in heart failure. Administration of branched-chain α-keto acid dehydrogenase (BCKD) kinase inhibitor BT2 has been shown to reduce cardiac BCAA levels and demonstrated positive effects on cardiac function in a preclinical setting. The current study is focused on evaluating the impact of BT2 on the systemic and cardiac levels of BCAA and their metabolites as well as activities of BCAA catabolic enzymes using a quantitative systems pharmacology model.

View Article and Find Full Text PDF

Cells and organisms require proper membrane composition to function and develop. Phospholipids are the major component of membranes and are primarily acquired through the diet. Given great variability in diet composition, cells must be able to deploy mechanisms that correct deviations from optimal membrane composition and properties.

View Article and Find Full Text PDF

Background: Patients with familial hypercholesterolemia (FH) display high levels of low-density lipoprotein cholesterol (LDL-c), endothelial dysfunction, and increased risk of premature atherosclerosis. We have previously shown that red blood cells (RBCs) from patients with type 2 diabetes induce endothelial dysfunction through increased arginase 1 and reactive oxygen species (ROS).

Objective: To test the hypothesis that RBCs from patients with FH (FH-RBCs) and elevated LDL-c induce endothelial dysfunction.

View Article and Find Full Text PDF

Background & Aims: Farnesoid X receptor (FXR) agonists and fibroblast growth factor 19 (FGF19) analogues suppress bile acid synthesis and are being investigated for their potential therapeutic efficacy in cholestatic liver diseases. We investigated whether bile acid synthesis associated with outcomes in 2 independent populations of people with primary sclerosing cholangitis (PSC) not receiving such therapy.

Methods: Concentrations of individual bile acids and 7α-hydroxy-4-cholesten-3-one (C4) were measured in blood samples from 330 patients with PSC attending tertiary care hospitals in the discovery and validation cohorts and from 100 healthy donors.

View Article and Find Full Text PDF

BackgroundApolipoprotein C-III (apoC-III) is a regulator of triglyceride (TG) metabolism, and due to its association with risk of cardiovascular disease, is an emergent target for pharmacological intervention. The impact of substantially lowering apoC-III on lipoprotein metabolism is not clear.MethodsWe investigated the kinetics of apolipoproteins B48 and B100 (apoB48 and apoB100) in chylomicrons, VLDL1, VLDL2, IDL, and LDL in patients heterozygous for a loss-of-function (LOF) mutation in the APOC3 gene.

View Article and Find Full Text PDF

Objective: Dietary fibres are essential for maintaining microbial diversity and the gut microbiota can modulate host physiology by metabolising the fibres. Here, we investigated whether the soluble dietary fibre oligofructose improves host metabolism by modulating bacterial transformation of secondary bile acids in mice fed western-style diet.

Design: To assess the impact of dietary fibre supplementation on bile acid transformation by gut bacteria, we fed conventional wild-type and TGR5 knockout mice western-style diet enriched or not with cellulose or oligofructose.

View Article and Find Full Text PDF

The primary hepatic consequence of obesity is non-alcoholic fatty liver disease (NAFLD), affecting about 25% of the global adult population. Non-alcoholic steatohepatitis (NASH) is a severe form of NAFLD characterized by liver lipid accumulation, inflammation, and hepatocyte ballooning, with a different degree of hepatic fibrosis. In the light of rapidly increasing prevalence of NAFLD and NASH, there is an urgent need for improved understanding of the molecular pathogenesis of these diseases.

View Article and Find Full Text PDF

Diabetic kidney disease is a consequence of hyperglycemia and other complex events driven by early glomerular hemodynamic changes and a progressive expansion of the mesangium. The molecular mechanisms behind the pathophysiological alterations of the mesangium are yet to be elucidated. This study aimed at investigating whether lipid signaling might be the missing link.

View Article and Find Full Text PDF

Background: AdipoR1 and AdipoR2 (AdipoRs) are plasma membrane proteins often considered to act as adiponectin receptors with a ceramidase activity. Additionally, the AdipoRs and their yeast and C. elegans orthologs are emerging as membrane homeostasis regulators that counter membrane rigidification by promoting fatty acid desaturation and incorporation of unsaturated fatty acids into phospholipids, thus restoring fluidity.

View Article and Find Full Text PDF

Objective: Although gut dysbiosis is increasingly recognised as a pathophysiological component of metabolic syndrome (MetS), the role and mode of action of specific gut microbes in metabolic health remain elusive. Previously, we identified the commensal butyrogenic to be associated with improved insulin sensitivity in subjects with MetS. In this proof-of-concept study, we investigated the potential therapeutic effects of L2-7 on systemic metabolic responses and duodenal transcriptome profiles in individuals with MetS.

View Article and Find Full Text PDF

Objective: Nonalcoholic fatty liver disease (NAFLD), defined by excessive lipid storage in hepatocytes, has recently emerged as a leading global cause of chronic liver disease. The aim of this study was to examine the role of STE20-type protein kinase TAOK3, which has previously been shown to associate with hepatic lipid droplets, in the initiation and aggravation of human NAFLD.

Methods: The correlation between TAOK3 mRNA expression and the severity of NAFLD was investigated in liver biopsies from 62 individuals.

View Article and Find Full Text PDF