Publications by authors named "Henri Voedts"

(p)ppGpp is a nucleotide alarmone that controls bacterial response to nutrient deprivation. Since elevated (p)ppGpp levels confer mecillinam resistance and are essential for broad-spectrum β-lactam resistance as mediated by the β-lactam-insensitive transpeptidase YcbB (LdtD), we hypothesized that (p)ppGpp might affect cell wall peptidoglycan metabolism. Here we report that (p)ppGpp-dependent β-lactam resistance does not rely on any modification of peptidoglycan metabolism, as established by analysis of Escherichia coli peptidoglycan structure using high-resolution mass spectrometry.

View Article and Find Full Text PDF

The D,D-transpeptidase activity of penicillin-binding proteins (PBPs) is the well-known primary target of β-lactam antibiotics that block peptidoglycan polymerization. β-lactam-induced bacterial killing involves complex downstream responses whose causes and consequences are difficult to resolve. Here, we use the functional replacement of PBPs by a β-lactam-insensitive L,D-transpeptidase to identify genes essential to mitigate the effects of PBP inactivation by β-lactams in actively dividing bacteria.

View Article and Find Full Text PDF

Bacteria resist to the turgor pressure of the cytoplasm through a net-like macromolecule, the peptidoglycan, made of glycan strands connected via peptides cross-linked by penicillin-binding proteins (PBPs). We recently reported the emergence of β-lactam resistance resulting from a bypass of PBPs by the YcbB L,D-transpeptidase (LdtD), which form chemically distinct 3→3 cross-links compared to 4→3 formed by PBPs. Here we show that peptidoglycan expansion requires controlled hydrolysis of cross-links and identify among eight endopeptidase paralogues the minimum enzyme complements essential for bacterial growth with 4→3 (MepM) and 3→3 (MepM and MepK) cross-links.

View Article and Find Full Text PDF

The bacterial cell wall plays a crucial role in viability and is an important drug target. In Escherichia coli, the peptidoglycan crosslinking reaction to form the cell wall is primarily carried out by penicillin-binding proteins that catalyse D,D-transpeptidase activity. However, an alternate crosslinking mechanism involving the L,D-transpeptidase YcbB can lead to bypass of D,D-transpeptidation and beta-lactam resistance.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionkh2phg7ar6sifvlc6dv02t7dpdnpd32c): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once