The environmental distribution of Burkholderia pseudomallei, the causative agent of melioidosis, remains poorly understood. B. pseudomallei is known to have the ability to occupy a variety of environmental niches, particularly in soil.
View Article and Find Full Text PDFBiochar is a potential tool to mitigate climate change by enhancing C sequestration in soils, but its use as a soil amendment to improve soil fertility and crop yields is still a contentious subject. In North East (NE) Thailand, biochar has been promoted to restore soil fertility in rubber tree plantations. Despite this, there is scarce information on the impact of biochar application on the soil biota, particularly on microbial communities associated with rubber trees.
View Article and Find Full Text PDFLack of access to clean water and adequate sanitation continues to be a major brake on development. Here we present the results of a 12-month investigation into the dynamics of Escherichia coli, a commonly used indicator of faecal contamination in water supplies, in three small, rural catchments in Laos, Thailand and Vietnam. We show that land use and hydrology are major controlling factors of E.
View Article and Find Full Text PDFRubber tree (Hevea brasiliensis) is of major economic importance in Southeast Asia and for small land holders in Thailand in particular. Due to the high value of latex, plantations are expanding into unsuitable areas, such as the northeast province of Thailand where soil fertility is very low and therefore appropriate management practices are of primary importance. Arbuscular mycorrhizal fungi (AMF) contribute to plant growth through a range of mechanisms and could play a key role in a more sustainable management of the rubber plantations.
View Article and Find Full Text PDFA bioreactor landfill is designed to manage municipal solid waste, through accelerated waste biodegradation, and stabilisation of the process by means of the controlled addition of liquid, i.e. leachate recirculation.
View Article and Find Full Text PDFMagnetic resonance sounding (MRS) is distinguished from other geophysical tools used for ground water investigation by the fact that it measures a magnetic resonance signal generated directly from subsurface water molecules. An alternating current pulse energizes a wire loop on the ground surface and the MRS signal is generated; subsurface water is indicated, with a high degree of reliability, by nonzero amplitude readings. Measurements with varied pulse magnitudes then reveal the depth and thickness of water saturated layers.
View Article and Find Full Text PDF