Publications by authors named "Henri Partanen"

We address the specular properties of Bessel-correlated fields, generated by illuminating a tilted rotating plane-parallel glass plate with a coherent Gaussian beam and passing the output beam though a mirror-based wavefront folding interferometer. This device allows us to produce beams whose specular properties are preserved in propagation. In the far zone, the specular nature of these partially coherent fields is shown to produce intensity-profile oscillations in the sub-diffraction-limit scale.

View Article and Find Full Text PDF

We demonstrate a modification to the traditional prism-based wavefront-folding interferometer that allows the measurement of spatial and temporal coherence, free of distortions and diffraction caused by the prism corners. In our modified system, the two prisms of the conventional system are replaced with six mirrors. The whole system is mounted on a linear -translation stage, with an additional linear stage in the horizontal arm.

View Article and Find Full Text PDF

The beaming effect in single apertures surrounded by periodic corrugations and the manipulation of beaming directions from such structures has gained considerable attention since discovery. Different materials and structural profiles have been studied in this context but directional beaming at angles larger than 45° has not been achieved. We design and demonstrate nanoslits in a gold film flanked by corrugations, which give rise to beaming angles ranging from 45° to 60°.

View Article and Find Full Text PDF

Three-dimensional (3D) printing of imaging-quality optics has been challenging due to the tight tolerances on surface shape and roughness. We report on manufacturing such optics with Print optical Technology, which is based on modified ink-jet printing. We demonstrate for the first time a 3D-printed singlet lens with a surface profile deviation of ±500 nm within a 12-mm aperture diameter.

View Article and Find Full Text PDF

We present modified scanning-type wavefront folding interferometers (WFIs), which allow spatial coherence measurements of non-uniformly correlated fields, where the degree of coherence is a function of two absolute spatial coordinates instead of coordinate separation only (Schell model). As an alternative to conventional prism-based WFI implementations, we introduce a scheme based on reflections by three mirrors. This setup allows us to avoid obstructions due to prism corners, and it is remarkably robust to polarization effects.

View Article and Find Full Text PDF

We consider electromagnetic spectral spatial coherence of random stationary light beams of arbitrary spectral width. We demonstrate that the normalized spectral coherence (or two-point) Stokes parameters and the electromagnetic spectral degree of coherence can be measured by narrowband filtering the light and detecting the spectral density and the polarization-state fringes around the optical axis of Young's interferometer. It is also shown that the normalized spectral polarization (or one-point) and coherence Stokes parameters are unaffected by filtering, and that the filtered light is strictly cross-spectrally pure.

View Article and Find Full Text PDF

The propagation of a novel class of paraxial spatially partially coherent beams exhibiting Bessel-type correlations is studied in free space and in paraxial optical systems. We show that, under certain conditions, such beams can have functionally identical forms of the absolute value of the complex degree of spatial coherence not only at the source plane and in the far zone, but also at all finite propagation distances. Under these conditions the degree of spatial coherence properties of the field is a shape-invariant quantity, but the spatial intensity distribution is only approximately shape-invariant.

View Article and Find Full Text PDF

An idealized polarizer model that works without the structural and material information is derived in the spatial frequency domain. The non-paraxial property is fully included and the result takes a simple analytical form, which provides a straight-forward explanation for the crosstalk between field components in non-paraxial cases. The polarizer model, in a 2 × 2-matrix form, can be conveniently used in cooperation with other computational optics methods.

View Article and Find Full Text PDF

We present a theoretical analysis and experimental verification of a z-scanning double-grating interferometer for spatial coherence measurements in space-frequency and space-time domains. This interferometer permits the measurement of spatial coherence between an arbitrary pair of points along a one-dimensional line, and in favorable conditions, it has a high light efficiency compared to the classical Young's two-pinhole experiment. The scheme is applicable to both quasi-monochromatic and broadband sources that need not obey the Schell model.

View Article and Find Full Text PDF

We examine the spatial coherence properties of supercontinuum fields generated by illuminating rotating bulk media with intense pulsed beams. Theoretical models are presented, which indicate the possibility of generating a class of Bessel-correlated fields (in time-averaged sense) using tilted plane-parallel glass plates and wedges as media for generation of supercontinuum radiation. In special cases, the ensuing fields have a strictly identical functional form in the spatial and angular domains.

View Article and Find Full Text PDF

We consider a class of spatially partially coherent light beams, which are generated by passing a Gaussian Schell-model beam though a wavefront-folding interferometer. In certain cases these beams are shape-invariant on propagation and can exhibit sharp internal structure with a central peak (specular beam) or a central dip (antispecular beam) whose dimensions depend on the spatial coherence area. Such beams are demonstrated experimentally and their cross-like distributions of the complex degree of spatial coherence are measured with a digital micromirror device.

View Article and Find Full Text PDF

The second-order coherence theory of partially spatially coherent light and the overlap integral method are applied to study the end-coupling of stationary multimode light beams into planar waveguides. A method is presented for the determination of the cross-spectral density function of the guided field. Examples are given on the effects of spatial coherence, lateral shift, angular tilt, and defocusing of the incident beam on the coupling efficiency, spatial coherence, and propagation characteristics of the guided field.

View Article and Find Full Text PDF

We measure the complex-valued spatial coherence function of a multimode broad-area laser diode using Young's classical double slit experiment realized with a digital micromirror device. We use this data to construct the coherent modes of the beam and to simulate its propagation before and after the measurement plane. When comparing the results to directly measured intensity profiles, we find excellent correspondence to the extent that even small details of the beam can be predicted.

View Article and Find Full Text PDF

We model the spatial coherence of broad-area laser diodes (BALDs) by representing the mutual intensity as superpositions of individually fully coherent but mutually uncorrelated fields. Consideration of spectroscopic modal structure measurements and intensity-based mode recovery shows that the standard Mercer-type coherent-mode expansion can lead to unsatisfactory results for real BALDs. However, we show that a so-called shifted elementary-field method provides a sufficiently accurate tool for spatial coherence and propagation modeling even if the modal structure of the BALD is severely distorted.

View Article and Find Full Text PDF