Pipe flows are commonly found in nature and industry as an effective mean of transporting fluids. They are primarily characterized by their resistance law, which relates the mean flow rate to the driving pressure gradient. Since Poiseuille and Hagen, various flow regimes and fluid rheologies have been investigated, but the behavior of shear-thickening suspensions, which jam above a critical shear stress, remains poorly understood despite important applications (e.
View Article and Find Full Text PDFGravity-driven drainage of small volumes of condensates, such as natural dew, is a challenge because small drops usually remain pinned to inclined surfaces. We report that submillimetric grooves substantially reduce dew retention by modifying the repartition of liquid: Because of a long-range coalescence mechanism mediated by grooves imbibition, the growth and shedding of large drops are accelerated. Such findings can be applied to increase the passive harvesting of dew as well as to accelerate the drainage of other condensates.
View Article and Find Full Text PDFThe flow of a charged-stabilized suspension through a single constricted channel is studied experimentally by tracking the particles individually. Surprisingly, the behavior is found to be qualitatively similar to that of inertial dry granular systems: For small values of the neck-to-particle size ratio (D/d<3), clogs form randomly as arches of the particle span the constriction. The statistics of the clogging events are Poissonian as reported for granular systems and agree for moderate particle volume fraction (ϕ≈20%) with a simple stochastic model for the number of particles at the neck.
View Article and Find Full Text PDFWe study the size and spatial distribution of surface nanobubbles formed by the solvent exchange method to gain insight into the mechanism of their formation. The analysis of Atomic Force Microscopy (AFM) images of nanobubbles formed on a hydrophobic surface reveals that the nanobubbles are not randomly located, which we attribute to the role of the history of nucleation during the formation. Moreover, the size of each nanobubble is found to be strongly correlated with the area of the bubble-depleted zone around it.
View Article and Find Full Text PDFWe report on the nucleation of bubbles on solids that are gently rubbed against each other in a liquid. The phenomenon is found to depend strongly on the material and roughness of the solid surfaces. For a given surface, temperature, and gas content, a trail of growing bubbles is observed if the rubbing force and velocity exceed a certain threshold.
View Article and Find Full Text PDFWhen a hydrophobic solid is in contact with water, surface nanobubbles often form at the interface. They have a lifetime many orders of magnitude longer than expected. Here, we show that they even withstand a temperature increase to temperatures close to the boiling point of bulk water; i.
View Article and Find Full Text PDFThe ethanol-water exchange process is one of the standard methods of generating nanobubbles at a solid-water interface. In this work, we examine whether the nanobubbles formed by the solvent exchange can initiate microbubble formation as the temperature increases, thus acting as nuclei. This, however, is not the case: the nanobubbles are stable and do not facilitate microbubble formation.
View Article and Find Full Text PDFWhen punctured, a flat soap film bursts by opening a hole driven by liquid surface tension. The hole rim does not, however, remain smooth but soon develops indentations at the tip of which ligaments form, ultimately breaking and leaving the initially connex film into a mist of disjointed drops. We report on original observations showing that these indentations result from a flaglike instability between the film and the surrounding atmosphere inducing an oscillatory motion out of its plane.
View Article and Find Full Text PDF