Publications by authors named "Henri J Huttunen"

Cerebral dopamine neurotrophic factor (CDNF) is an unconventional neurotrophic factor that is a disease-modifying drug candidate for Parkinson's disease. CDNF has pleiotropic protective effects on stressed cells, but its mechanism of action remains incompletely understood. Here, we use state-of-the-art advanced structural techniques to resolve the structural basis of CDNF interaction with GRP78, the master regulator of the unfolded protein response (UPR) pathway.

View Article and Find Full Text PDF

Cerebral dopamine neurotrophic factor (CDNF) is an unconventional neurotropic factor that modulates unfolded protein response (UPR) pathway signaling and alleviates endoplasmic reticulum (ER) stress providing cytoprotective effects in different models of neurodegenerative disorders. Here, we developed a brain-penetrating peptidomimetic compound based on human CDNF. This compound called HER-096 shows similar potency and mechanism of action as CDNF, and promotes dopamine neuron survival, reduces α-synuclein aggregation and modulates UPR signaling in in vitro models.

View Article and Find Full Text PDF

Background: Cerebral dopamine neurotrophic factor (CDNF) is an unconventional neurotrophic factor that protects dopamine neurons and improves motor function in animal models of Parkinson's disease (PD).

Objective: The primary objectives of this study were to assess the safety and tolerability of both CDNF and the drug delivery system (DDS) in patients with PD of moderate severity.

Methods: We assessed the safety and tolerability of monthly intraputamenal CDNF infusions in patients with PD using an investigational DDS, a bone-anchored transcutaneous port connected to four catheters.

View Article and Find Full Text PDF

Tauopathies are neurodegenerative diseases that are characterized by accumulation of hyperphosphorylated tau protein, higher-order aggregates, and tau filaments. Protein phosphatase 2A (PP2A) is a major tau dephosphorylating phosphatase, and a decrease in its activity has been demonstrated in tauopathies, including Alzheimer's disease. Prolyl oligopeptidase is a serine protease that is associated with neurodegeneration, and its inhibition normalizes PP2A activity without toxicity under pathological conditions.

View Article and Find Full Text PDF

During intracerebral hemorrhage (ICH), hematoma formation at the site of blood vessel damage results in local mechanical injury. Subsequently, erythrocytes lyse to release hemoglobin and heme, which act as neurotoxins and induce inflammation and secondary brain injury, resulting in severe neurological deficits. Accelerating hematoma resorption and mitigating hematoma-induced brain edema by modulating immune cells has potential as a novel therapeutic strategy for functional recovery after ICH.

View Article and Find Full Text PDF

Clinical trials in neurodegenerative disorders have been associated with high rate of failures, while in oncology, the implementation of precision medicine and focus on genetically defined subtypes of disease and targets for drug development have seen an unprecedented success. With more than 20 genes associated with Parkinson's disease (PD), most of which are highly penetrant and often cause early onset or atypical signs and symptoms, and an increasing understanding of the associated pathophysiology culminating in dopaminergic neurodegeneration, applying the technologies and designs into the field of neurodegeneration seems a logical step. This review describes some of the methods used in oncology clinical trials and some attempts in Parkinson's disease and the potential of further implementing genetics, biomarkers and smart clinical trial designs in this disease area.

View Article and Find Full Text PDF

Misfolded, pathological tau protein propagates from cell to cell causing neuronal degeneration in Alzheimer's disease and other tauopathies. The molecular mechanisms of this process have remained elusive. Unconventional secretion of tau takes place via several different routes, including direct penetration through the plasma membrane.

View Article and Find Full Text PDF

A molecular hallmark in Parkinson's disease (PD) pathogenesis are α-synuclein aggregates. Cerebral dopamine neurotrophic factor (CDNF) is an atypical growth factor that is mostly resident in the endoplasmic reticulum but exerts its effects both intracellularly and extracellularly. One of the beneficial effects of CDNF can be protecting neurons from the toxic effects of α-synuclein.

View Article and Find Full Text PDF

Amblyopia is a developmental disorder associated with abnormal visual experience during early childhood commonly arising from strabismus and/or anisometropia and leading to dysfunctions in visual cortex and to various visual deficits. The different forms of neuronal activity that are attenuated in amblyopia have been only partially characterized. In electrophysiological recordings of healthy human brain, the presentation of visual stimuli is associated with event-related activity and oscillatory responses.

View Article and Find Full Text PDF

Different types of carbon materials are biocompatible with neural cells and can promote maturation. The mechanism of this effect is not clear. Here we have tested the capacity of a carbon material composed of amorphous sp carbon backbone, embedded with a percolating network of sp carbon domains to sustain neuronal cultures.

View Article and Find Full Text PDF

The progressive accumulation and spread of misfolded tau protein in the nervous system is the hallmark of tauopathies, progressive neurodegenerative diseases with only symptomatic treatments available. A growing body of evidence suggests that spreading of tau pathology can occur cell-to-cell transfer involving secretion and internalization of pathological forms of tau protein followed by templated misfolding of normal tau in recipient cells. Several studies have addressed the cell biological mechanisms of tau secretion.

View Article and Find Full Text PDF

The concept of repairing the brain with growth factors has been pursued for many years in a variety of neurodegenerative diseases including primarily Parkinson's disease (PD) using glial cell line-derived neurotrophic factor (GDNF). This neurotrophic factor was discovered in 1993 and shown to have selective effects on promoting survival and regeneration of certain populations of neurons including the dopaminergic nigrostriatal pathway. These observations led to a series of clinical trials in PD patients including using infusions or gene delivery of GDNF or the related growth factor, neurturin (NRTN).

View Article and Find Full Text PDF

The plasma membrane consists of a variety of discrete domains differing from the surrounding membrane in composition and properties. Selective partitioning of protein to these microdomains is essential for membrane functioning and integrity. Studying the nanoscale size and dynamic nature of the membrane microdomains requires advanced imaging approaches with a high spatiotemporal resolution and, consequently, expensive and specialized equipment, unavailable for most researchers and unsuited for large-scale studies.

View Article and Find Full Text PDF

Accumulation of misfolded and aggregated forms of tau protein in the brain is a neuropathological hallmark of tauopathies, such as Alzheimer's disease and frontotemporal lobar degeneration. Tau aggregates have the ability to transfer from one cell to another and to induce templated misfolding and aggregation of healthy tau molecules in previously healthy cells, thereby propagating tau pathology across different brain areas in a prion-like manner. The molecular mechanisms involved in cell-to-cell transfer of tau aggregates are diverse, not mutually exclusive and only partially understood.

View Article and Find Full Text PDF

Neurotrophic factors (NTF) are a subgroup of growth factors that promote survival and differentiation of neurons. Due to their neuroprotective and neurorestorative properties, their therapeutic potential has been tested in various neurodegenerative diseases. Bioavailability of NTFs in the target tissue remains a major challenge for NTF-based therapies.

View Article and Find Full Text PDF

Tauopathies are characterized by cerebral accumulation of Tau protein aggregates that appear to spread throughout the brain via a cell-to-cell transmission process that includes secretion and uptake of pathological Tau, followed by templated misfolding of normal Tau in recipient cells. Here, we show that phosphorylated, oligomeric Tau clusters at the plasma membrane in N2A cells and is secreted in vesicle-free form in an unconventional process sensitive to changes in membrane properties, particularly cholesterol and sphingomyelin content. Cell surface heparan sulfate proteoglycans support Tau secretion, possibly by facilitating its release after membrane penetration.

View Article and Find Full Text PDF

Amblyopia is a common visual disorder that is treatable in childhood. However, therapies have limited efficacy in adult patients with amblyopia. Fluoxetine can reinstate early-life critical period-like neuronal plasticity and has been used to recover functional vision in adult rats with amblyopia.

View Article and Find Full Text PDF

Heparin and heparin-related sulphated carbohydrates inhibit ligand binding of the receptor for advanced glycation end products (RAGE). Here, we have studied the ability of heparin to inhibit homophilic interactions of RAGE in living cells and studied how heparin related structures interfere with RAGE⁻ligand interactions. Homophilic interactions of RAGE were studied with bead aggregation and living cell protein-fragment complementation assays.

View Article and Find Full Text PDF

Disruption of the circadian rhythms is a frequent preclinical and clinical manifestation of Alzheimer's disease. Furthermore, it has been suggested that shift work is a risk factor for Alzheimer's disease. Previously, we have reported association of intolerance to shift work (job-related exhaustion in shift workers) with a variant rs12506228A, which is situated close to melatonin receptor type 1A gene (MTNR1A) and linked to MTNR1A brain expression levels.

View Article and Find Full Text PDF

α-synuclein and Tau are proteins prone to pathological misfolding and aggregation that are normally found in the presynaptic and axonal compartments of neurons. Misfolding initiates a homo-oligomerization and aggregation cascade culminating in cerebral accumulation of aggregated α-synuclein and Tau in insoluble protein inclusions in multiple neurodegenerative diseases. Traditionally, α-synuclein-containing Lewy bodies have been associated with Parkinson's disease and Tau-containing neurofibrillary tangles with Alzheimer's disease and various frontotemporal dementia syndromes.

View Article and Find Full Text PDF

Cerebral dopamine neurotrophic factor (CDNF) protects the nigrostriatal dopaminergic (DA) neurons in rodent models of Parkinson's disease and restores DA circuitry when delivered after these neurons have begun to degenerate. These DA neurons have been suggested to transport striatal CDNF retrogradely to the substantia nigra (SN). However, in cultured cells the binding and internalization of extracellular CDNF has not been reported.

View Article and Find Full Text PDF

Stress granules are membrane-less RNA- and RNA-binding protein-containing complexes that are transiently assembled in stressful conditions to promote cell survival. Several stress granule-associated RNA-binding proteins have been associated with neurodegenerative diseases. In addition, a close link was recently identified between the stress granule core-nucleating protein TIA-1 and Tau.

View Article and Find Full Text PDF

One of the defining pathological features of Alzheimer's disease is the intraneuronal accumulation of tau (also known as MAPT) protein. Tau is also secreted from neurons in response to various stimuli and accumulates in the cerebrospinal fluid of Alzheimer's disease patients. Tau pathology might spread from cell to cell through a mechanism involving secretion and uptake.

View Article and Find Full Text PDF

Kainate type of glutamate receptors (KARs) are highly expressed during early brain development and may influence refinement of the circuitry, via modulating synaptic transmission and plasticity. KARs are also localized to axons, however, their exact roles in regulating presynaptic processes remain controversial. Here, we have used a microfluidic chamber system allowing specific manipulation of KARs in presynaptic neurons to study their functions in synaptic development and function in vitro.

View Article and Find Full Text PDF