Publications by authors named "Henri Hakkarainen"

Vehicular emissions deteriorate air quality in urban areas notably. The aim of this study was to conduct an in-depth characterization of gaseous and particle emissions, and their potential to form secondary aerosol emissions, of the cars meeting the most recent emission Euro 6d standards, and to investigate the impact of fuel as well as engine and aftertreatment technologies on pollutants at warm and cold ambient temperatures. Studied vehicles were a diesel car with a diesel particulate filter (DPF), two gasoline cars (with and without a gasoline particulate filter (GPF)), and a car using compressed natural gas (CNG).

View Article and Find Full Text PDF

The emissions and exposure limits for airborne PM are lacking, with limited scientific data for toxicity. Therefore, we continuously monitored and calculated the number and mass concentrations of airborne PM in December 2017, January 2018 and March 2018 during the high pollution period in Guangzhou. We collected PM from the same period and analyzed their chemical components.

View Article and Find Full Text PDF

Ultrafine particles (UFP) with a diameter of ≤0.1 μm, are contributors to ambient air pollution and derived mainly from traffic emissions, yet their health effects remain poorly characterized. The olfactory mucosa (OM) is located at the rooftop of the nasal cavity and directly exposed to both the environment and the brain.

View Article and Find Full Text PDF

The differences in the traffic fuels have been shown to affect exhaust emissions and their toxicity. Especially, the aromatic content of diesel fuel is an important factor considering the emissions, notably particulate matter (PM) concentrations. The ultra-fine particles (UFP, particles with a diameter of <100 nm) are important components of engine emissions and connected to various health effects, such as pulmonary and systematic inflammation, and cardiovascular disorders.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates the sources and toxicological effects of particulate matter (PM) collected in Guangzhou during a high air pollution season, focusing on the relationships between PM size, its chemical components, and how they affect cellular health.
  • The research shows that smaller PM contains more water-soluble ions and PAHs, while larger PM includes more metallic elements, with traffic exhaust, soil dust, and biomass burning being significant sources of pollution.
  • Findings reveal exposure to PM causes cell damage, including reduced mitochondrial activity and increased oxidative stress, with coarse PM also causing notable inflammatory effects, underscoring the importance of considering all PM sizes in health assessments.
View Article and Find Full Text PDF

The sources and chemical components of urban air particles exhibit seasonal variations that may affect their hazardousness to human health. Our aims were to investigate winter and spring variation in particulate matter (PM) sources, components and toxicological responses of different PM size fractions from samples collected in Guangzhou, China. Four size-segregated PM samples (PM, PM, PM, and PM) were collected separately during winter (December 2017 and January 2018) and spring (March 2018).

View Article and Find Full Text PDF

Black carbon (BC) is a component of ambient particulate matter which originates from incomplete combustion emissions. BC is regarded as an important short-lived climate forcer, and a significant public health hazard. These two concerns have made BC a focus in aerosol science.

View Article and Find Full Text PDF

Little evidence is available regarding the impact of different sizes of inhaled particulate matter (PM) on inflammatory responses in healthy young adults in connection with toxicological responses. We conducted a five-time repeated measurement panel study on 88 healthy young college students in Guangzhou, China from December 2017 to January 2018. Blood samples were collected from each participant and tested for tumor necrosis factor alpha (TNF-α) levels every week for 5 consecutive weeks.

View Article and Find Full Text PDF

Solid fuel usage in residential heating and cooking is one of the largest sources of ambient and indoor air particulate matter, which causes adverse effects on the health of millions of peoples worldwide. Emissions from solid fuel combustion, such as biomass or coal, are detrimental to health, but toxicological responses are largely unknown. In the present study, we compared the toxicological responses regarding cytotoxicity, inflammation and genotoxicity of spruce (SPR) and brown coal briquette (BCB) combustion aerosols on human alveolar epithelial cells (A549) as well as a coculture of A549 and differentiated human monocytic cells (THP-1) into macrophages exposed at the air-liquid interface (ALI).

View Article and Find Full Text PDF

The health risks of air pollutants and ambient particulate matter (PM) are widely known. PM composition and toxicity have shown substantial spatiotemporal variability. Yet, the connections between PM composition and toxicological and health effects are vaguely understood.

View Article and Find Full Text PDF

Background: Wood combustion emissions have been studied previously either by in vitro or in vivo models using collected particles, yet most studies have neglected gaseous compounds. Furthermore, a more accurate and holistic view of the toxicity of aerosols can be gained with parallel in vitro and in vivo studies using direct exposure methods. Moreover, modern exposure techniques such as air-liquid interface (ALI) exposures enable better assessment of the toxicity of the applied aerosols than, for example, the previous state-of-the-art submerged cell exposure techniques.

View Article and Find Full Text PDF

Background: Emissions from road traffic are under constant discussion since they pose a major threat to human health despite the increasingly strict emission targets and regulations. Although the new passenger car regulations have been very effective in reducing the particulate matter (PM) emissions, the aged car fleet in some EU countries remains a substantial source of PM emissions. Moreover, toxicity of PM emissions from multiple new types of bio-based fuels remain uncertain and different driving conditions such as the sub-zero running temperature has been shown to affect the emissions.

View Article and Find Full Text PDF

Ambient particulate matter (PM) is a leading global environmental health risk. Current air quality regulations are based on airborne mass concentration. However, PM from different sources have distinct chemical compositions and varied toxicity.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: