Purpose: The purpose of this study was to evaluate a deep-learning model (DLM) for classifying coronary arteries on coronary computed tomography -angiography (CCTA) using the Coronary Artery Disease-Reporting and Data System (CAD-RADS).
Materials And Methods: The DLM was trained with 10,800 curved multiplanar reformatted (cMPR) CCTA images classified by an expert radiologist using the CAD-RADS. For each of the three main coronary arteries, nine cMPR images 40° apart acquired around each arterial circumference were then classified by the DLM using the highest probability.