Publications by authors named "Henri G Franquelim"

Interacting with living systems typically involves the ability to address lipid membranes of cellular systems. The first step of interaction of a nanorobot with a cell will thus be the detection of binding to a lipid membrane. Utilizing DNA origami, we engineered a biosensor with single-molecule Fluorescence Resonance Energy Transfer (smFRET) as transduction mechanism for precise lipid vesicle detection and cargo delivery.

View Article and Find Full Text PDF

Although cell membranes exist in excess of water under physiological conditions, there are a number of biochemical processes, such as adsorption of biomacromolecules or membrane fusion events, that require partial or even complete transient dehydration of lipid membranes. Even though the dehydration process is crucial for understanding all fusion events, still little is known about the structural adaptation of lipid membranes when their interfacial hydration layer is perturbed. Here, we present the study of the nanoscale structural reorganization of phase-separated, supported lipid bilayers (SLBs) under a wide range of hydration conditions.

View Article and Find Full Text PDF
Article Synopsis
  • DNA origami is a flexible nanoengineering tool used in fields like membrane physiology and biophysics, allowing for easy modification of DNA strands to create membrane-active devices.
  • Biological membranes are crucial for cell structure and function, making them prime targets for DNA origami in synthetic biology and biomedical research.
  • The chapter outlines experimental methods to study how DNA origami interacts with synthetic membrane models, providing protocols for creating lipid model membranes and using microscopy to characterize these interactions.
View Article and Find Full Text PDF
Article Synopsis
  • Sphingolipids, a diverse type of lipid found in eukaryotic cell membranes, play a crucial role in organizing lipids into domains that affect membrane function.
  • Researchers developed photoswitchable sphingolipids that can transition between liquid-ordered and disordered states when exposed to specific light wavelengths, allowing for control of their organization in membrane models.
  • Investigations using advanced microscopy showed that different types of photoswitchable sphingolipids can either reduce or increase liquid-ordered domain areas upon light-induced isomerization, highlighting the importance of their structural properties in membrane dynamics.
View Article and Find Full Text PDF

Particle size is an important characteristic of materials with a direct effect on their physicochemical features. Besides nanoparticles, particle size and surface curvature are particularly important in the world of lipids and cellular membranes as the cell membrane undergoes conformational changes in many biological processes which leads to diverging local curvature values. On account of that, it is important to develop cost-effective, rapid and sufficiently precise systems that can measure the surface curvature on the nanoscale that can be translated to size for spherical particles.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are exploring ways to enhance motor proteins for use in artificial devices, inspired by natural muscle structures like sarcomeres, but faced challenges in accurately arranging these proteins at a tiny scale.
  • The new method focuses on creating a simpler motor arrangement using a contractile mesh that can be applied to soft materials and activated by ATP, similar to a powered exoskeleton for robotic systems.
  • The study includes a model for force production in these systems and showcases 3D printed modules capable of performing intricate tasks, like grasping and waving, when stimulated by light.
View Article and Find Full Text PDF

Signal transmission in neurons goes along with changes in the transmembrane potential. To report them, different approaches, including optical voltage-sensing dyes and genetically encoded voltage indicators, have evolved. Here, we present a DNA nanotechnology-based system and demonstrated its functionality on liposomes.

View Article and Find Full Text PDF

Self-assembly of biomembranes results from the intricate interactions between water and the lipids' hydrophilic head groups. Therefore, the lipid-water interplay strongly contributes to modulating membrane architecture, lipid diffusion, and chemical activity. Here, we introduce a new method of obtaining dehydrated, phase-separated, supported lipid bilayers (SLBs) solely by controlling the decrease of their environment's relative humidity.

View Article and Find Full Text PDF

One of the great challenges of bottom-up synthetic biology is to recreate the cellular geometry and surface functionality required for biological reactions. Of particular interest are lipid membrane interfaces where many protein functions take place. However, cellular 3D geometries are often complex, and custom-shaping stable lipid membranes on relevant spatial scales in the micrometer range has been hard to accomplish reproducibly.

View Article and Find Full Text PDF
Article Synopsis
  • * The research showed that the N-terminal part of MOG alone is insufficient for ELISA-based identification of MOG antibodies in patients, indicating that full-length MOG is required for effective antibody binding.
  • * The intracellular part of MOG is crucial in maintaining optimal spacing for bivalent binding of antibodies, highlighting the necessity of a cell-based approach for identifying MOG-Abs in patients.
View Article and Find Full Text PDF

As a key mechanism underpinning many biological processes, protein self-organization has been extensively studied. However, the potential to apply the distinctive, nonlinear biochemical properties of such self-organizing systems to biotechnological problems such as the facile detection and characterization of biomolecular interactions has not yet been explored. Here, we describe an assay in a 96-well plate format that harnesses the emergent behavior of the Min system to provide a readout of biomolecular interactions.

View Article and Find Full Text PDF

The MinDE proteins from E. coli have received great attention as a paradigmatic biological pattern-forming system. Recently, it has surfaced that these proteins do not only generate oscillating concentration gradients driven by ATP hydrolysis, but that they can reversibly deform giant vesicles.

View Article and Find Full Text PDF

Membrane-active cytoskeletal elements, such as FtsZ, septin or actin, form filamentous polymers able to induce and stabilize curvature on cellular membranes. In order to emulate the characteristic dynamic self-assembly properties of cytoskeletal subunits in vitro, biomimetic synthetic scaffolds were here developed using DNA origami. In contrast to our earlier work with pre-curved scaffolds, we specifically assessed the potential of origami mimicking straight filaments, such as actin and microtubules, by origami presenting cholesteryl anchors for membrane binding and additional blunt end stacking interactions for controllable polymerization into linear filaments.

View Article and Find Full Text PDF

Giant unilamellar phospholipid vesicles are attractive starting points for constructing minimal living cells from the bottom-up. Their membranes are compatible with many physiologically functional modules and act as selective barriers, while retaining a high morphological flexibility. However, their spherical shape renders them rather inappropriate to study phenomena that are based on distinct cell shape and polarity, such as cell division.

View Article and Find Full Text PDF

In bottom-up synthetic biology, one of the major methodological challenges is to provide reaction spaces that mimic biological systems with regard to topology and surface functionality. Of particular interest are cell- or organelle-shaped membrane compartments, as many protein functions unfold at lipid interfaces. However, shaping artificial cell systems using materials with non-intrusive physicochemical properties, while maintaining flexible lipid interfaces relevant to the reconstituted protein systems, is not straightforward.

View Article and Find Full Text PDF

Reproduction, i.e. the ability to produce new individuals from a parent organism, is a hallmark of living matter.

View Article and Find Full Text PDF

Ceramides are central intermediates of sphingolipid metabolism that also function as potent messengers in stress signaling and apoptosis. Progress in understanding how ceramides execute their biological roles is hampered by a lack of methods to manipulate their cellular levels and metabolic fate with appropriate spatiotemporal precision. Here, we report on clickable, azobenzene-containing ceramides, caCers, as photoswitchable metabolic substrates to exert optical control over sphingolipid production in cells.

View Article and Find Full Text PDF

DNA origami nanotechnology is being increasingly used to mimic membrane-associated biophysical phenomena. Although a variety of DNA origami nanostructures has already been produced to target lipid membranes, the requirements for membrane binding have so far not been systematically assessed. Here, we used a set of elongated DNA origami structures with varying placement and number of cholesteryl-based membrane anchors to compare different strategies for their incorporation.

View Article and Find Full Text PDF

Membrane sculpting and transformation is essential for many cellular functions, thus being largely regulated by self-assembling and self-organizing protein coats. Their functionality is often encoded by particular spatial structures. Prominent examples are BAR domain proteins, the 'banana-like' shapes of which are thought to aid scaffolding and membrane tubulation.

View Article and Find Full Text PDF

The endosomal sorting complex required for transport (ESCRT)-III is critical for membrane abscission; however, the mechanism underlying ESCRT-III-mediated membrane constriction remains elusive. A study of the dynamic assembly and disassembly of the ESCRT-III machinery in vitro and in vivo now suggests that the turnover of the observed spiralling filaments is critical for membrane abscission during cytokinesis.

View Article and Find Full Text PDF

Ceramide is a pro-apoptotic sphingolipid with unique physical characteristics. Often viewed as a second messenger, its generation can modulate the structure of lipid rafts. We prepared three photoswitchable ceramides, ACes, which contain an azobenzene photoswitch allowing for optical control over the N-acyl chain.

View Article and Find Full Text PDF

Over the last decade, functionally designed DNA nanostructures applied to lipid membranes prompted important achievements in the fields of biophysics and synthetic biology. Taking advantage of the universal rules for self-assembly of complementary oligonucleotides, DNA has proven to be an extremely versatile biocompatible building material on the nanoscale. The possibility to chemically integrate functional groups into oligonucleotides, most notably with lipophilic anchors, enabled a widespread usage of DNA as a viable alternative to proteins with respect to functional activity on membranes.

View Article and Find Full Text PDF

Amyloid fibers, implicated in a wide range of diseases, are formed when proteins misfold and stick together in long rope-like structures. As a natural mechanism, osmolytes can be used to modulate protein aggregation pathways with no interference with other cellular functions. The osmolyte sucrose delays fibrillation of the ribosomal protein S6 leading to softer and less shaped-defined fibrils.

View Article and Find Full Text PDF

The DNA binding proteins from starved cells from Deinococcus radiodurans, Dps1-DR2263 and Dps2-DRB0092, have a common overall structure of hollow spherical dodecamers. Their involvement in the homeostasis of intracellular metal and DNA protection was addressed. Our results show that DrDps proteins are able to oxidize ferrous to ferric iron by oxygen or hydrogen peroxide.

View Article and Find Full Text PDF

We report a synthetic biology-inspired approach for the engineering of amphipathic DNA origami structures as membrane-scaffolding tools. The structures have a flat membrane-binding interface decorated with cholesterol-derived anchors. Sticky oligonucleotide overhangs on their side facets enable lateral interactions leading to the formation of ordered arrays on the membrane.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session9jql6a8ogtkoe95o00bd15040jcnkjiv): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once