Publications by authors named "Henri Autio"

Background: Diverse antidepressants were recently described to bind to TrkB (tyrosine kinase B) and drive a positive allosteric modulation of endogenous BDNF (brain-derived neurotrophic factor). Although neurotrophins such as BDNF can bind to p75NTR (p75 neurotrophin receptor), their precursors are the high-affinity p75NTR ligands. While part of an unrelated receptor family capable of inducing completely opposite physiological changes, TrkB and p75NTR feature a crosslike conformation dimer and carry a cholesterol-recognition amino acid consensus in the transmembrane domain.

View Article and Find Full Text PDF

Introduction: The prevalence of migraine is highest among working age individuals, and this disease is associated with an increased number of sick leaves and health care visits, as well as lost productivity. Erenumab, the first monoclonal antibody targeting the calcitonin gene-related peptide (CGRP) pathway, is effective in decreasing the monthly number of migraine days, but evidence of its impact on the number of sick leave days and health care visits in patients with migraine is limited.

Methods: This retrospective registry study focused on occupationally active patients with migraine treated with erenumab at a Finnish private health care provider, Terveystalo.

View Article and Find Full Text PDF

A brief burst-suppressing isoflurane anesthesia has been shown to rapidly alleviate symptoms of depression in a subset of patients, but the neurobiological basis of these observations remains obscure. We show that a single isoflurane anesthesia produces antidepressant-like behavioural effects in the learned helplessness paradigm and regulates molecular events implicated in the mechanism of action of rapid-acting antidepressant ketamine: activation of brain-derived neurotrophic factor (BDNF) receptor TrkB, facilitation of mammalian target of rapamycin (mTOR) signaling pathway and inhibition of glycogen synthase kinase 3β (GSK3β). Moreover, isoflurane affected neuronal plasticity by facilitating long-term potentiation in the hippocampus.

View Article and Find Full Text PDF

Background: Trk receptor tyrosine kinases regulate multiple important neuronal processes during the development and in the adulthood. Tyrosine phosphorylation of Trk serves as the initial step in the Trk signaling pathway and indicates receptor' autocatalytic activity. However, methods allowing simple and large-scale Trk phosphorylation analyses in cultured cells are lacking.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF) importantly regulates learning and memory and supports the survival of injured neurons. Reduced BDNF levels have been detected in the brains of Alzheimer's disease (AD) patients but the exact role of BDNF in the pathophysiology of the disorder remains obscure. We have recently shown that reduced signaling of BDNF receptor TrkB aggravates memory impairment in APPswe/PS1dE9 (APdE9) mice, a model of AD.

View Article and Find Full Text PDF

Neurotrophins comprise a group of neuronal growth factors that are essential for the development and maintenance of the nervous system. However, the immature pro-neurotrophins promote apoptosis by engaging in a complex with sortilin and the p75 neurotrophin receptor (p75(NTR)). To identify the interaction site between sortilin and p75(NTR), we analyzed binding between chimeric receptor constructs and truncated p75(NTR) variants by co-immunoprecipitation experiments, surface plasmon resonance analysis, and FRET.

View Article and Find Full Text PDF

Injured neurons become dependent on trophic factors for survival. However, application of trophic factors to the site of injury is technically extremely challenging. Novel approaches are needed to circumvent this problem.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF) plays an important role in neuronal plasticity, learning, and memory. Levels of BDNF and its main receptor TrkB (TrkB.TK) have been reported to be decreased while the levels of the truncated TrkB (TrkB.

View Article and Find Full Text PDF

Accumulating evidence suggests that biogenic amine-based antidepressants act, at least in part, via regulation of brain-derived neurotrophic factor (BDNF) signaling. Biogenic amine-based antidepressants increase BDNF synthesis and activate its signaling pathway through TrkB receptors. Moreover, the antidepressant-like effects of these molecules are abolished in BDNF deficient mice.

View Article and Find Full Text PDF

Acetylcholinesterase inhibitors are first-line therapies for Alzheimer's disease. These drugs increase cholinergic tone in the target areas of the cholinergic neurons of the basal forebrain. Basal forebrain cholinergic neurons are dependent upon trophic support by nerve growth factor (NGF) through its neurotrophin receptor, TrkA.

View Article and Find Full Text PDF