Appl Environ Microbiol
September 2008
Transition from reversible to irreversible bacterial adhesion is a highly relevant but poorly understood step in initial biofilm formation. We hypothesize that in oral biofilm formation, irreversible adhesion is caused by bond strengthening due to specific bacterial interactions with salivary conditioning films. Here, we compared the initial adhesion of six oral bacterial strains to salivary conditioning films with their adhesion to a bovine serum albumin (BSA) coating and related their adhesion to the strengthening of the binding forces measured with bacteria-coated atomic force microscopy cantilevers.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2009
Infection is the main cause of biomaterials-related failure. A simple technique to test in-vivo new antimicrobial and/or nonadhesive implant coatings is unavailable. Current in vitro methods for studying bacterial adhesion and growth on biomaterial surfaces lack the influence of the host immune system.
View Article and Find Full Text PDFPhenotypic variation of Staphylococcus epidermidis involving the slime related ica operon results in heterogeneity in surface characteristics of individual bacteria in axenic cultures. Five clinical S. epidermidis isolates demonstrated phenotypic variation, i.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
October 2008
The killing efficacies of multipurpose lens care solutions on planktonic and biofilm bacteria grown in polypropylene contact lens storage cases with and without silver impregnation and effects on bacterial transmission from storage cases to silicone hydrogel contact lenses were investigated. For transmission studies, biofilms of Staphylococcus aureus 835 or Pseudomonas aeruginosa no. 3 were grown on lens storage cases and incubated with a contact lens in different multipurpose lens care solutions (Opti-Free(R)Express(R), ReNu(R) MultiPlus(R), and SoloCare Aquatrade mark) or 0.
View Article and Find Full Text PDFActivated carbons remove waterborne bacteria from potable water systems through attractive Lifshitz-van der Waals forces despite electrostatic repulsion between negatively charged cells and carbon surfaces. In this paper we quantify the interaction forces between bacteria with negatively and positively charged, mesoporous wood-based carbons, as well as with a microporous coconut carbon. To this end, we glued carbon particles to the cantilever of an atomic force microscope and measured the interaction forces upon approach and retraction of thus made tips.
View Article and Find Full Text PDFAim: To compare effects of three cetylpyridinium chloride (CPC) formulations with and without alcohol and Tween80 on physico-chemical properties of salivary pellicles, bacterial detachment in vitro and bacterial killing in vivo.
Material And Methods: Adsorption of CPC to salivary pellicles in vitro was studied using X-ray photoelectron spectroscopy and water contact angle measurements. Adhesion and detachment of a co-adhering bacterial pair was determined in vitro using a flow chamber.
Initial adhesion is a determinant in the development of microbial biofilms. It is influenced, amongst others, by the surface hydrophobicity and the electrostatic characteristics of the substratum and adhering organisms. Enterococcus faecalis strains, grown in pure cultures, generally display subpopulations with different electrokinetic features, reflected in a bimodal electrophoretic mobility distribution.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
July 2008
Silicone rubber is a frequently used biomaterial in biomedical devices and implants, yet highly prone to microbial adhesion and the development of a biomaterial-centered infection. Effective coating of silicone rubber to discourage microbial adhesion has thus far been impossible due to the hydrophobic character of its surface, surface deterioration upon treatment and instability of coatings under physiological conditions. Here we present a method to successfully grow polyacrylamide (PAAm) brushes from silicone rubber surfaces after removal of low molecular weight organic molecules (LMWOM), such as silane oligomers.
View Article and Find Full Text PDFIn rural areas around the world, people often rely on water filtration plants using activated carbon particles for safe water supply. Depending on the carbon surface, adhering microorganisms die or grow to form a biofilm. Assays to assess the efficacy of activated carbons in bacterial removal do not allow direct observation of bacterial adhesion and the determination of viability.
View Article and Find Full Text PDFBone cements loaded with combinations of antibiotics are assumed more effective in preventing infection than bone cements with gentamicin as a single drug. Moreover, loading with an additional antibiotic may increase interconnectivity between antibiotic particles to enhance release. We hypothesize addition of clindamycin to a gentamicin-loaded cement yields higher antibiotic release and causes larger inhibition zones against clinical isolates grown on agar and stronger biofilm inhibition.
View Article and Find Full Text PDFMetal-on-metal (MOM) bearings involving cobalt-chromium (Co-Cr) alloys in total hip arthroplasties are becoming more and more popular due to their low wear. Consequences of corrosion products of Co-Cr alloys are for the most part unclear, and the influence of cobalt and chromium ions on biofilm formation has never been studied. Therefore, the aim of this study was to evaluate how Co-Cr ions affect bacterial growth, biofilm formation, and architecture.
View Article and Find Full Text PDFWe introduce a procedure for determining shear forces at the balance between attachment and detachment of bacteria under flow. This procedure can be applied to derive adhesion forces in weak-adherence systems, such as polymer brush coatings, which are currently at the center of attention for their control of bacterial adhesion and biofilm formation.
View Article and Find Full Text PDFAppl Environ Microbiol
November 2007
Otolaryngol Head Neck Surg
September 2007
Objective: We sought to identify bacterial strains responsible for biofilm formation on silicone rubber voice prostheses.
Study Design: We conducted an analysis of the bacterial population in biofilms on used silicone rubber voice prostheses by using new microbiological methods.
Methods: Two microbiological methods were used: polymerase chain reaction-denaturing gradient gel electrophoresis and fluorescence in situ hybridization.
The salivary pellicle is a negatively charged protein film, to which oral bacteria readily adhere. Chitosans are cationic biomolecules with known antimicrobial properties that can be modified in different ways to enhance its antimicrobial activity. Here, we determined the changes in surface chemical composition using X-ray photoelectron spectroscopy (XPS), in hydrophobicity by analyzing water contact angles, in charge through measuring streaming potentials, and evaluated morphology using atomic force microscopy (AFM), of salivary pellicles upon adsorption of different chitosans.
View Article and Find Full Text PDFThe antigen I/II family of surface proteins is expressed by oral streptococci, including Streptococcus mutans, and mediates specific binding to, among others, salivary films. The aim of this study was to investigate the interaction forces between salivary proteins and S. mutans with (LT11) and without (IB03987) antigen I/II through atomic force microscopy (AFM) and to relate these interaction forces with the adhesion of the strains to saliva-coated glass in a parallel plate flow chamber.
View Article and Find Full Text PDFBiomaterial-related infection of joint replacements is the second most common cause of implant failure, with serious consequences. Chronically infected replacements cannot be treated without removal of the implant, as the biofilm mode of growth protects the bacteria against antibiotics. This review discusses biofilm formation on joint replacements and the important clinical phenomenon of small-colony variants (SCVs).
View Article and Find Full Text PDFThis study examined bacterial adhesion to a new multi-component cross-linked poly(ethylene glycol)-based polymer coating that can be applied by spin-coating or spraying onto diverse biomaterials. Adhesion of five clinically isolated bacterial strains involved in biomaterial-centered infections were studied in a parallel-plate flow chamber at different shear rates and after exposure of the coating to different physiological fluids. The new chemistry inhibits non-specific biomolecular and cell binding interactions.
View Article and Find Full Text PDFThe attachment of waterborne pathogens onto surfaces can be increased by coating the surfaces with positive charge-enhancing polymers. In this paper, the increased efficacy of polydiallyldimethylammonium chloride (p-DADMAC) coatings on glass was evaluated in a parallel plate flow chamber with the use of waterborne pathogens (Raoultella terrigena, Escherichia coli, and Brevundimonas diminuta). p-DADMAC coatings strongly compensated the highly negative charges on the glass surface and even yielded a positively charged surface when applied from a 500 ppm solution.
View Article and Find Full Text PDFA method is presented to prevent microbial adhesion to solid surfaces exploiting the unique properties of polymer brushes. Polyacrylamide (PAAm) brushes were grown from silicon wafers by atom transfer radical polymerization (ATRP) using a three-step reaction procedure consisting of immobilization of a coupling agent gamma-aminopropyltriethoxysilane, anchoring of an ATRP initiator 4-(chloromethyl)benzoyl chloride, and controlled radical polymerization of acrylamide. The surfaces were characterized by X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, ellipsometry, and contact-angle measurements.
View Article and Find Full Text PDFThis review presents the clinical background to abdominal wall reconstruction, the different types of surgical meshes employed and known mechanisms of infection. It is shown that there are major physico-chemical differences between available meshes, which, in combination with the location of the mesh, the surgical technique applied and hernia type involved influence the infection potential.
View Article and Find Full Text PDFThe antigen I/II family of surface proteins is expressed by most oral streptococci, including Streptococcus mutans, and mediates specific adhesion to, among other things, salivary films and extracellular matrix proteins. In this study we showed that antigen I/II-deficient S. mutans isogenic mutant IB03987 was nearly unable to adhere to laminin films under flow conditions due to a lack of specific interactions (0.
View Article and Find Full Text PDFPin tract infections of external fixators used in orthopaedic reconstructive bone surgery are serious complications that can eventually lead to periostitis and osteomyelitis. In vitro experiments have demonstrated that bacteria adhering to stainless steel in a biofilm mode of growth detach under the influence of small electric currents, while remaining bacteria become less viable upon current application. Therefore, we have investigated whether a 100microA electric current can prevent signs of clinical infection around percutaneous pins, implanted in the tibia of goats.
View Article and Find Full Text PDFMicro-implants are increasingly popular in clinical orthodontics to effect skeletal anchorage. However, biofilm formation on their surfaces and subsequent infection of peri-implant tissues can result in either exfoliation or surgical removal of these devices. The present study aimed to assess biofilm formation on five commercially available, surface characterized micro-implant systems in vitro.
View Article and Find Full Text PDF