Publications by authors named "Hennink W"

The microclimate pH (μpH) in biodegradable polymers, such as poly(D,L-lactic-co-glycolic acid) (PLGA) 50/50, commonly falls to deleterious acidic levels during biodegradation, resulting in instability of encapsulated acid-labile molecules. The μpH distribution in microspheres of a more hydrophilic polyester, poly(D,L-lactide-co-hydroxymethyl glycolide) (PLHMGA), was measured and compared to that in PLGA 50/50 of similar molecular weight and degradation time scales. pH mapping in the polymers was performed after incubation under physiological conditions by using a previously validated ratiometric method employing confocal laser scanning microscopy (CLSM).

View Article and Find Full Text PDF

The aim of current study was to evaluate the effect of nano-apatitic particles (nAp) incorporation on the degradation characteristics and biocompatibility of poly(lactide-co-glycolide) (PLGA)-based nanofibrous scaffolds. Composite PLGA/poly(ɛ-caprolactone) (PCL) blended (w/w = 3/1) polymeric electrospun scaffolds with 0-30 wt% of nAp incorporation (n0-n30) were prepared. The obtained scaffolds were firstly evaluated by morphological, physical and chemical characterization, followed by an in vitro degradation study.

View Article and Find Full Text PDF

Polymerizable and hydrolytically cleavable dexamethasone (DEX, red dot in picture) derivatives were covalently entrapped in core-cross-linked polymeric micelles that were prepared from a thermosensitive block copolymer (yellow and gray building block). By varying the oxidation degree of the thioether in the drug linker, the release rate of DEX could be controlled. The DEX-loaded micelles were used for efficient treatment of inflammatory arthritis in two animal models.

View Article and Find Full Text PDF

A one-step preparation of nanoparticles with poly(lactide-co-glycolide) (PLGA) pre-modified with polyethylenimine (PEI) is better in requirements for DNA delivery compared to those prepared in a two-step process (preformed PLGA nanoparticles and subsequently coated with PEI). The particles were prepared by emulsification of PLGA/ethyl acetate in an aqueous solution of PVA and PEI. DLS, AFM and SEM were used for the size characteristics.

View Article and Find Full Text PDF

The development of thermo-responsive and reduction-sensitive polymeric micelles based on an amphiphilic block copolymer poly[(PEG-MEMA)-co-(Boc-Cyst-MMAm)]-block-PEG (denoted PEG-P-SS-HP) for the intracellular delivery of anticancer drugs is reported. PTX, as model drug, was loaded into the PEG-P-SS-HP micelles with an encapsulation efficiency >90%, resulting in a high drug loading content (up to 35 wt%). The PTX-loaded PEG-P-SS-HP micelles show slow drug release in PBS and rapid release after incubation with DTT.

View Article and Find Full Text PDF

The aim of this study was to evaluate the in vivo biodegradation and biocompatibility of three-dimensional (3D) scaffolds based on a hydroxyl-functionalized polyester (poly(hydroxymethylglycolide-co-ε-caprolactone), PHMGCL), which has enhanced hydrophilicity, increased degradation rate, and improved cell-material interactions as compared to its counterpart poly(ε-caprolactone), PCL. In this study, 3D scaffolds based on this polymer (PHMGCL, HMG:CL 8:92) were prepared by means of fiber deposition (melt-plotting). The biodegradation and tissue biocompatibility of PHMGCL and PCL scaffolds after subcutaneous implantation in Balb/c mice were investigated.

View Article and Find Full Text PDF

Tissue defects caused by diseases or trauma present enormous challenges in regenerative medicine. Recently, a better understanding of the biological processes underlying tissue repair led to the establishment of new approaches in tissue engineering which comprise the combination of biodegradable scaffolds and appropriate cells together with specific environmental cues, such as growth or adhesive factors. These factors (in fact proteins) have to be loaded and sustainably released from the scaffolds in time.

View Article and Find Full Text PDF

Xanthone exhibits several medicinal activities and especially it inhibits the growth of cancer cells. However, the use of xanthone is limited because of its low aqueous solubility and systemic toxicity. In the present study xanthone was loaded into poly(ethylene glycol)-b-poly[N-(2-hydroxypropyl) methacrylamide-dilactate] mPEG-b-p(HPMAm-Lac(2)) micelles in order to overcome these drawbacks.

View Article and Find Full Text PDF

Background: Activated proximal tubular cells play an important role in renal fibrosis. We investigated whether sunitinib and a kidney-targeted conjugate of sunitinib were capable of attenuating fibrogenic events in tubulointerstitial fibrosis.

Methods: A kidney-targeted conjugate was prepared by linkage of a sunitinib analog (named 17864) via a platinum-based linker to the kidney-specific carrier lysozyme.

View Article and Find Full Text PDF

The epidermal growth factor receptor (EGFR) is a validated target for anti-cancer therapy and several EGFR inhibitors are used in the clinic. Over the years, an increasing number of studies have reported on the crosstalk between EGFR and other receptors that can contribute to accelerated cancer development or even acquisition of resistance to anti-EGFR therapies. Combined targeting of EGFR and insulin-like growth factor 1 receptor (IGF-1R) is a rational strategy to potentiate anti-cancer treatment and possibly retard resistance development.

View Article and Find Full Text PDF

In our previous study, phage display selections were performed by in situ perfusion of a random peptide library through a mouse brain. This yielded two peptides (GLA and GYR) that showed significant binding to human brain endothelial cells (hCMEC/D3) when displayed on phage particles, but not to human umbilical vein endothelial cells (HUVECs). In the present study, these peptides were produced synthetically and coupled to liposomes to investigate the capacity of the peptides to act as ligands for targeting to hCMEC/D3 cells.

View Article and Find Full Text PDF

Colchicinoids are very potent tubulin-binding compounds, which interfere with microtubule formation, giving them strong cytotoxic properties, such as cell mitosis inhibition and induction of microcytoskeleton depolymerization. While this makes them promising vascular disrupting agents (VDAs) in cancer therapy, their dose-limiting toxicity has prevented any clinical application for this purpose. Therefore, colchicinoids are considered attractive lead molecules for the development of novel vascular disrupting nanomedicine.

View Article and Find Full Text PDF

Purpose: The clinical application of holmium acetylacetonate microspheres (HoAcAcMS) for the intratumoral radionuclide treatment of solid malignancies requires a thorough understanding of their stability. Therefore, an in vitro and an in vivo stability study with HoAcAcMS was conducted.

Methods: HoAcAcMS, before and after neutron irradiation, were incubated in a phosphate buffer at 37°C for 6 months.

View Article and Find Full Text PDF

Doxorubicin is an anthracycline anticancer agent that is commonly used in the treatment of a variety of cancers, but its application is associated with severe side effects. Biodegradable and thermosensitive polymeric micelles based on poly(ethylene glycol)-b-poly[N-(2-hydroxypropyl) methacrylamide-lactate] (mPEG-b-p(HPMAmLac(n))) have been studied as drug delivery systems for therapeutic and imaging agents and have shown promising in vitro and in vivo results. The purpose of this study was to investigate the covalent coupling of a doxorubicin-glucuronide prodrug (DOX-propGA3) to the core of mPEG-b-p(HPMAmLac(2)) micelles.

View Article and Find Full Text PDF

During chronic treatment with L-dopa (LD), Parkinsonian patients often experience uncontrolled motor complications due to fluctuations of the plasmatic levels of LD that result in pulsatile dopaminergic stimulation. To overcome these plasmatic fluctuations, a novel prodrug of LD, L-dopa-α-lipoic acid (LD-LA), has been proposed as a tool for achieving continuous dopaminergic stimulation. Due to slower susceptibility toward enzymatic conversion by LD-degrading enzymes (such as catechol-O-methyltransferase and monoamine oxidase), the plasma half-life of this prodrug is longer than that of LD.

View Article and Find Full Text PDF

Recently we reported that reacetylation of N,N,N-trimethyl chitosan (TMC) reduced the adjuvant effect of TMC in mice after intranasal (i.n.) administration of whole inactivated influenza virus (WIV) vaccine.

View Article and Find Full Text PDF

The development of a macromolecular conjugate of a multitargeted tyrosine kinase inhibitor is described that can be used for renal-specific delivery into proximal tubular cells. A novel sunitinib analogue, that is, 17864, is conjugated to a NH(2) -PAMAM-G3 dendrimer via the platinum (II)-based Universal Linkage System (ULS™). The activity of 17864 is retained after coordination to the ULS linker alone or when coupled to NH(2) -PAMAM-G3.

View Article and Find Full Text PDF

Liposomes are versatile (sub)micron-sized membrane vesicles that can be used for a variety of applications, including drug delivery and in vivo imaging but they also represent excellent models for artificial membranes or cells. Several studies have demonstrated that in vitro transcription and translation can take place inside liposomes to obtain compartmentalized production of functional proteins within the liposomes (Kita et al. in Chembiochem 9(15):2403-2410, 2008; Moritani et al.

View Article and Find Full Text PDF

Many different systems and strategies have been evaluated for drug targeting to tumors over the years. Routinely used systems include liposomes, polymers, micelles, nanoparticles and antibodies, and examples of strategies are passive drug targeting, active drug targeting to cancer cells, active drug targeting to endothelial cells and triggered drug delivery. Significant progress has been made in this area of research both at the preclinical and at the clinical level, and a number of (primarily passively tumor-targeted) nanomedicine formulations have been approved for clinical use.

View Article and Find Full Text PDF

Scaffolds based on a novel functionalized polyester, pHMGCL, are electrospun and characterized morphologically and physically. In vitro degradation studies of pHMGCL films show considerable mass loss and molecular weight reduction within 70 weeks. Scaffolds composed of fibers with uniform diameter (≈ 900 nm) and with melting temperatures higher than body temperature are prepared.

View Article and Find Full Text PDF

Thermosensitive polymers are characterized by temperature-dependent aqueous solution properties. Below their lower critical solution temperature they are in an expanded state and fully dissolved, while above it they are dehydrated and insoluble. This has been exploited for the development of polymeric micelles that can be formed or destabilized depending on the solution temperature.

View Article and Find Full Text PDF

Cationic polymers have been studied for nucleic acid delivery both in vitro and in vivo. However, many polymer-based formulations suffer from lack of stability in biologic fluids due to interactions with anionic biomacromolecules such as proteins and polysaccharides. Likely, the stronger the electrostatic interactions between a cationic polymer and nucleic acids, the higher the stability of the polyplexes in biologic fluids will be.

View Article and Find Full Text PDF