We have performed classical molecular dynamics simulations of 3 keV Ar + (CH)(C) collisions where (,) = (3,2),(1,4),(9,4) and (2,11). The simulated mass spectra of covalently bound reaction products reproduce the main features of the corresponding experimental results reported by Domaracka , , 2018, , 15052-15060. The present results support their conclusion that molecular growth is mainly driven by knockout where individual atoms are promptly removed in Rutherford type scattering processes.
View Article and Find Full Text PDFThe radiative cooling of naphthalene dimer cations, (CH) was studied experimentally through action spectroscopy using two different electrostatic ion-beam storage rings, DESIREE in Stockholm and Mini-Ring in Lyon. The spectral characteristics of the charge resonance (CR) band were observed to vary significantly with a storage time of up to 30 seconds in DESIREE. In particular, the position of the CR band shifts to the blue, with specific times (inverse of rates) of 0.
View Article and Find Full Text PDFMost low-mass stars form in stellar clusters that also contain massive stars, which are sources of far-ultraviolet (FUV) radiation. Theoretical models predict that this FUV radiation produces photodissociation regions (PDRs) on the surfaces of protoplanetary disks around low-mass stars, which affects planet formation within the disks. We report James Webb Space Telescope and Atacama Large Millimeter Array observations of a FUV-irradiated protoplanetary disk in the Orion Nebula.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons have widely been conjectured to be ubiquitous in space, as supported by the recent discovery of two isomers of cyanonaphthalene, indene, and 2-cyanoindene in the Taurus molecular cloud-1 using radioastronomy. Here, the photoionization dynamics of 1-cyanonaphthalene (1-CNN) are investigated using synchrotron radiation over the hν = 9.0-19.
View Article and Find Full Text PDFFullerenes are lowest energy structures for gas phase all-carbon particles for a range of sizes, but graphite remains the lowest energy allotrope of bulk carbon. This implies that the lowest energy structure changes nature from fullerenes to graphite or graphene at some size and therefore, in turn, implies a limit on the size of free fullerenes as ground state structures. We calculate this largest stable single shell fullerene to be of size = 1 × 10, using the AIREBO effective potential.
View Article and Find Full Text PDFThe photoionisation and photofragmentation of the two cyclic dipetides cyclo(alanyl-glycine) cGA and cyclo(glycyl-glycine) cGG, have been studied combining experiments and simulations. State selected fragments from the ionized molecules are detected using photo-electron photo-ion coincidence (PEPICO) measurements and specific fragmentation paths are identified and characterized the use of ion-neutral coincidence maps. The simulations, performed using Quantum Chemistry methods, allow us to infer the fragmentation mechanisms of the ionized and excited molecules.
View Article and Find Full Text PDFEmerging experimental techniques combined with theoretical advances allow unprecedented studies of the dynamics of gas phase molecules and clusters induced in interactions with photons, electrons, or heavy particles. Here, the authors highlight recent advances, key open questions, and challenges in this field of research with focus on experimental studies of dynamics of ions stored on millisecond timescales and beyond, and its applications in astrochemistry and astronomy.
View Article and Find Full Text PDFThe geometric structures and reaction dynamics of clusters of carbon fullerene molecules are reviewed. The topics on structure cover the elementary building blocks, the interatomic and intermolecular potentials, and the geometric structures of the aggregates. The dynamics part describes the time development after excitation with laser light, in bimolecular collisions, and in collisions with high energy atomic ions.
View Article and Find Full Text PDFThe unimolecular dissociation and infrared radiative cooling rates of cationic 1-hydroxypyrene (OHPyr, CHO) and 1-bromopyrene (BrPyr, CHBr) are measured using a cryogenic electrostatic ion beam storage ring. A novel numerical approach is developed to analyze the time dependence of the dissociation rate and to determine the absolute scaling of the radiative cooling rate coefficient. The model results show that radiative cooling competes with dissociation below the critical total vibrational energies E = 5.
View Article and Find Full Text PDFThe VUV photoionisation and photofragmentation of cyclo-alanine-alanine (cAA) has been studied in a joint experimental and theoretical work. The photoelectron spectrum and the photoelectron-photoion coincidence (PEPICO) measurements, which enable control of the energy being deposited, combined with quantum chemistry calculations, provide direct insight into the cAA molecular stability after photoionisation. The analysis of the ion-neutral coincidence experiments with the molecular dynamics simulations and the exploration of the potential energy surface allows a complete identification of the fragmentation pathways.
View Article and Find Full Text PDF