Publications by authors named "Henning Stark"

A dispersion-engineered multipass cell operating in the enhanced frequency regime is presented. Through the use of dispersive cavity mirrors, the nonlinear interaction is reshaped resulting in a smoother broadened spectrum, which yields a significant improvement in compressed pulse quality. The 70 W average power output of an Yb:fiber laser at 50 kHz repetition rate is compressed from 205 fs to 32 fs with more than 96% of the energy contained in the temporal main feature of the pulse.

View Article and Find Full Text PDF

A high-energy, high-power ultrafast fiber laser system based on spatiotemporal coherent combination is presented. Bursts of eight subsequent chirped-pulse amplification (CPA)-stretched pulses are amplified simultaneously in 16 parallel ytterbium-doped rod-type amplifiers. After spatial and temporal coherent combination of the total 128 amplified pulse replicas into a single pulse, it is compressed in a partially protective-gas-filled CPA compressor.

View Article and Find Full Text PDF

In this work, a continuously tunable extreme ultraviolet source delivering a state-of-the-art photon flux of >10 ph/s/eV spanning from 50 eV to 70 eV is presented. The setup consists of a high-power fiber laser with a subsequent multipass cell followed by a waveguide-based high harmonic generation setup. Spectral tuning over the full line spacing is achieved by slightly adjusting the lasers driving pulse energy, utilizing nonlinear propagation effects and pulse chirping.

View Article and Find Full Text PDF

We present a high-power source of broadband terahertz (THz) radiation covering the whole THz spectral region (0.1-30 THz). The two-color gas plasma generation process is driven by a state-of-the-art ytterbium fiber chirped pulse amplification system based on coherent combination of 16 rod-type amplifiers.

View Article and Find Full Text PDF

The impact of nonlinear refraction and residual absorption on the achievable peak- and average power in beam-splitter-based coherent beam combination is analyzed theoretically. While the peak power remains limited only by the aperture size, a fundamental average power limit is given by the thermo-optical and thermo-mechanical properties of the beam splitter material and its coatings. Based on our analysis, 100 kW average power can be obtained with state-of-the-art optics at maintained high beam quality (M ≤ 1.

View Article and Find Full Text PDF

A multipass cell for nonlinear compression to few-cycle pulse duration is introduced composing dielectrically enhanced silver mirrors on silicon substrates. Spectral broadening with 388 W output average power and 776 µJ pulse energy is obtained at 82% cell transmission. A high output beam quality (${{\rm{M}}^2} \lt {1.

View Article and Find Full Text PDF

Differentially pumped capillaries, i.e., capillaries operated in a pressure gradient environment, are widely used for nonlinear pulse compression.

View Article and Find Full Text PDF

An ultrafast fiber chirped-pulse amplification laser system based on a coherent combination of 16 ytterbium-doped rod-type amplifiers is presented. It generates 10 mJ pulse energy at 1 kW average power and 120 fs pulse duration. A partially helium-protected, two-staged chirped-pulse amplification grating compressor is implemented to maintain the close to diffraction-limited beam quality by avoiding nonlinear absorption in air.

View Article and Find Full Text PDF

We demonstrate the reliable generation of 1-mJ, 31-fs pulses with an average power of 1 kW by post-compression of 200-fs pulses from a coherently combined Yb:fiber laser system in an argon-filled Herriott-type multi-pass cell with an overall compression efficiency of 96%. We also analyze the output beam, revealing essentially no spatiospectral couplings or beam quality loss.

View Article and Find Full Text PDF

We present on THz generation in the two-color gas plasma scheme driven by a high-power, ultrafast fiber laser system. The applied scheme is a promising approach for scaling the THz average power but it has been limited so far by the driving lasers to repetition rates up to 1 kHz. Here, we demonstrate recent results of THz generation operating at a two orders of magnitude higher repetition rate.

View Article and Find Full Text PDF

The pulse-energy scaling technique electro-optically controlled divided-pulse amplification is implemented in a high-power ultrafast fiber laser system based on coherent beam combination. A fiber-integrated front end and a multipass-cell-based back end allow for a small footprint and a modular implementation. Bursts of eight pulses are amplified parallel in up to 12 ytterbium-doped large-pitch fiber amplifiers.

View Article and Find Full Text PDF

An ultrafast laser based on the coherent beam combination of four ytterbium-doped step-index fiber amplifiers is presented. The system delivers an average power of 3.5 kW and a pulse duration of 430 fs at an 80 MHz repetition rate.

View Article and Find Full Text PDF

We present a novel phase locking scheme for the coherent combination of beam arrays in the filled aperture configuration. Employing a phase dithering mechanism for the different beams similar to LOCSET, dithering frequencies for sequential combination steps are reused. By applying an additional phase alternating scheme, this allows for the use of standard synchronized multichannel lock-in electronics for phase locking a large number of channels even when the frequency bandwidth of the employed phase actuators is limited.

View Article and Find Full Text PDF

A novel technique for divided-pulse amplification is presented in a proof-of-principle experiment. A pulse burst, cut out of the pulse train of a mode-locked oscillator, is amplified and temporally combined into a single pulse. High combination efficiency and excellent pulse contrast are demonstrated.

View Article and Find Full Text PDF