J Biol Chem
July 2015
Lysine residues are implicated in driving the ligand binding to the LDL receptor family. However, it has remained unclear how specificity is regulated. Using coagulation factor VIII as a model ligand, we now study the contribution of individual lysine residues in the interaction with the largest member of the LDL receptor family, low-density lipoprotein receptor-related protein (LRP1).
View Article and Find Full Text PDFADAMDEC1 is a proteolytically active metzincin metalloprotease displaying rare active site architecture with a zinc-binding Asp residue (Asp-362). We previously demonstrated that substitution of Asp-362 for a His residue, thereby reconstituting the canonical metzincin zinc-binding environment with three His zinc ligands, increases the proteolytic activity. The protease also has an atypically short domain structure with an odd number of Cys residues in the metalloprotease domain.
View Article and Find Full Text PDFStaphylococcus aureus is a dangerous human pathogen. A number of the proteins secreted by this bacterium are implicated in its virulence, but many of the components of its secretome are poorly characterized. Strains of S.
View Article and Find Full Text PDFThe C1 domain of factor VIII (FVIII) has been implicated in binding to multiple constituents, including phospholipids, von Willebrand factor, and low-density lipoprotein receptor-related protein (LRP). We have previously described a human monoclonal antibody called KM33 that blocks these interactions as well as cellular uptake by LRP-expressing cells. To unambiguously identify the apparent "hot spot" on FVIII to which this antibody binds, we have employed hydrogen-deuterium exchange mass spectrometry.
View Article and Find Full Text PDFADAMDEC1 (Decysin-1) is a putative ADAM (a disintegrin and metalloprotease)-like metalloprotease with an unknown physiological role, selectively expressed in mature dendritic cells and macrophages. When compared with other members of the ADAM family, ADAMDEC1 displays some unusual features. It lacks the auxiliary cysteine-rich, EGF, and transmembrane domains, as well as the cytoplasmic tail.
View Article and Find Full Text PDFFrequent infusions of intravenous factor VIII (FVIII) are required to prevent bleeding associated with hemophilia A. To reduce the treatment burden, recombinant FVIII with a longer half-life was developed without changing the protein structure. FVIII-polyethylene glycol (PEG) conjugates were prepared using an enzymatic process coupling PEG (ranging from 10 to 80 kDa) selectively to a unique O-linked glycan in the FVIII B-domain.
View Article and Find Full Text PDFIntroduction: Bleeding episodes in haemophilia patients with inhibitors are primarily treated with by-passing agents such as recombinant activated FVII (rFVIIa). Prophylactic treatment with rFVIIa has been shown to significantly reduce the number of bleeding episodes as compared to conventional on-demand haemostatic therapy, and a reduced dosing frequency could present an improved treatment option in inhibitor patients.
Materials And Methods: A series of glycoPEGylated rFVIIa derivatives (5-40K PEG) has been produced and their effect and pharmocokinetics have been investigated in several animal species.
The pharmacokinetics and pharmacodynamics of 40k-PEG-rFVIIa, a GlycoPEGylated derivative of recombinant wild-type FVIIa, were compared with rFVIIa in rabbits. The procoagulant effect was determined as the weight of the clot formed in a defined segment of a facial vein. A time course study was conducted where ligation was made 10 minutes, 12 or 24 hours after i.
View Article and Find Full Text PDFCoagulation factor XIII (FXIII) is activated by thrombin and catalyses crosslinking between fibrin monomers thereby providing mechanical strength to the fibrin network. V34L is a common FXIII-A polymorphism found in the activation peptide. FXIII-A V34L is activated faster by thrombin and provides formation of a tighter clot at fibrinogen concentrations in the low end of the physiological range.
View Article and Find Full Text PDFStaphylococcus aureus is a dangerous human pathogen whose antibiotic resistance is steadily increasing and no efficient vaccine is as yet available. This serious threat drives extensive studies on staphylococcal physiology and pathogenicity pathways, especially virulence factors. Spl (serine protease-like) proteins encoded by an operon containing up to six genes are a good example of poorly characterized secreted proteins probably involved in virulence.
View Article and Find Full Text PDFProphylaxis with 2-4 times weekly dosing of factor (F)VIII or FIX is established as an efficacious and safe treatment in haemophilia. Although prophylaxis is not readily available for the inhibitor patient, recent studies have demonstrated a reduction in bleeding episodes in inhibitor patients treated with daily infusions of FVIIa. In order to develop a treatment option comparable to prophylaxis with FVIII or FIX we looked to PEGylation which is an established method for prolonging the circulatory half-life of proteins.
View Article and Find Full Text PDFProteases are of significant importance for the virulence of Staphylococcus aureus. Nevertheless, their subset, the serine protease-like proteins, remains poorly characterized. Here presented is an investigation of SplB protease catalytic activity revealing that the enzyme possesses exquisite specificity and only cleaves efficiently after the sequence Trp-Glu-Leu-Gln.
View Article and Find Full Text PDFFactor VIIa (FVIIa) circulates in the blood in a zymogen-like state. Only upon association with membrane-bound tissue factor (TF) at the site of vascular injury does FVIIa become active and able to initiate blood coagulation. Here we used hydrogen exchange monitored by mass spectrometry to investigate the conformational effects of site-directed mutagenesis at key positions in FVIIa and the origins of enhanced intrinsic activity of FVIIa analogs.
View Article and Find Full Text PDFThe remarkably high specificity of the coagulation proteases towards macromolecular substrates is provided by numerous interactions involving the catalytic groove and remote exosites. For FVIIa [activated FVII (Factor VII)], the principal initiator of coagulation via the extrinsic pathway, several exosites have been identified, whereas only little is known about the specificity dictated by the active-site architecture. In the present study, we have profiled the primary P4-P1 substrate specificity of FVIIa using positional scanning substrate combinatorial libraries and evaluated the role of the selective active site in defining specificity.
View Article and Find Full Text PDFCoagulation factor VIIa (FVIIa) is a serine protease that, after binding to tissue factor (TF), plays a pivotal role in the initiation of blood coagulation. We used hydrogen exchange monitored by mass spectrometry to visualize the details of FVIIa activation by comparing the exchange kinetics of distinct molecular states, namely zymogen FVII, endoproteolytically cleaved FVIIa, TF-bound zymogen FVII, TF-bound FVIIa, and FVIIa in complex with an active site inhibitor. The hydrogen exchange kinetics of zymogen FVII and FVIIa are identical indicating highly similar solution structures.
View Article and Find Full Text PDFSome protease inhibitors use uncommon mechanisms to restrain the activity of their target enzymes. A recent paper in Chemistry and Biology (Lu et al., 2006) demonstrates a curious mechanism of inhibition of a caspase, relying on principles of native peptide ligation.
View Article and Find Full Text PDFTissue factor (TF) is believed to play an important role in coagulation, inflammation, angiogenesis and wound healing as well as in tumor growth and metastasis. To facilitate in vivo studies in experimental murine models, we have produced recombinant murine factor VII (FVII) and the ectodomain of murine TF, TF(1-223). Murine FVII was activated to FVIIa with human factor Xa and upon reaction with FFR-chloromethyl ketone converted into an active site-blocked TF antagonist, FFR-FVIIa.
View Article and Find Full Text PDFHuman paracaspase has been predicted to be a member of the protein structural fold that encompasses protease clan CD. To determine whether paracaspase has catalytic activity we have expressed the region corresponding to the catalytic domain and used protease activity-based chemical probes to profile the putative active site. A leucine-based acyloxymethyl ketone probe that covalently labels cysteine proteases discloses a hydrophobic P 1 preference in the putative active site.
View Article and Find Full Text PDFA clinically relevant model of transient global brain ischemia involving cardiac arrest followed by resuscitation in dogs was utilized to study the expression and proteolytic processing of apoptosis-regulatory proteins. In the hippocampus, an increase in pro-apoptotic Bcl-2 family proteins Bcl-XS and Bak was detected, concomitant with proteolysis of Bcl-XL and Bcl-2, following ischemia-reperfusion injury. Also, biphasic cleavage of Bid was found in this region of the brain, with early generation of tBid-p11 within 10 min of cardiac arrest, followed by generation of tBid-p15 within 30-min reperfusion, consistent with activation of this pro-apoptotic protein.
View Article and Find Full Text PDFMost proteases are synthesized as inactive precursors to protect the synthetic machinery of the cell and allow timing of activation. The mechanisms used to render latency are varied but tend to be conserved within protease families. Proteases belonging to the caspase family have a unique mechanism mediated by transitions of two surface loops, and on the basis of conservation of mechanism one would expect this to be preserved by caspase relatives.
View Article and Find Full Text PDFApoptosis triggered through the intrinsic pathway by radiation and anti-neoplastic drugs is initiated by the activation of caspase-9. To elucidate control mechanisms in this pathway we used a range of synthetic and natural reagents. The inhibitory potency of acetyl-Asp-Glu-Val-Asp-aldehyde ('Ac-DEVD-CHO'), benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone ('Z-VAD-FMK') and the endogenous caspase inhibitor X-chromosome-linked inhibitor of apoptosis protein ('XIAP') against recombinant caspase-9 were predictive of the efficacy of these compounds in a cell-free system.
View Article and Find Full Text PDFTrends Biochem Sci
February 2002
The suppression of apoptosis is essential to the propagation of viruses, and to the control of development and homeostasis in insects and mammals. The central components of all apoptotic pathways are proteases of the caspase family. Therefore, it is not surprising that the processes of natural selection, as well as pharmaceutical chemists, have designed compounds that directly target caspase activity in attempts to regulate apoptosis.
View Article and Find Full Text PDF