Analysis of the oxidation state and coordination geometry using pre-edge analysis is attractive for heterogeneous catalysis and materials science, especially for in situ and time-resolved studies or highly diluted systems. In the present study, focus is laid on iron-based catalysts. First a systematic investigation of the pre-edge region of the Fe K-edge using staurolite, FePO4, FeO and α-Fe2O3 as reference compounds for tetrahedral Fe(2+), tetrahedral Fe(3+), octahedral Fe(2+) and octahedral Fe(3+), respectively, is reported.
View Article and Find Full Text PDFThe micro-segmented flow technique was applied for continuous synthesis of ZnO micro- and nanoparticles with short residence times of 9.4 s and 21.4 s, respectively.
View Article and Find Full Text PDFOver the last decade X-ray absorption near edge structure (XANES) spectroscopy has been used in an increasing number of microbiological studies. In addition to other applications it has served as a valuable tool for the investigation of the sulphur globules deposited intra- or extracellularly by certain photo- and chemotrophic sulphur-oxidizing (Sox) bacteria. For XANES measurements, these deposits can easily be concentrated by filtration or sedimentation through centrifugation.
View Article and Find Full Text PDFBefore its uptake and oxidation by purple sulfur bacteria, elemental sulfur probably first has to be mobilized. To obtain more insight into this mobilization process in the phototrophic purple sulfur bacterium Allochromatium vinosum, we used HPLC analysis and X-ray absorption near-edge structure (XANES) spectroscopy for the detection and identification of sulfur compounds in culture supernatants and bacterial cells. We intended to identify soluble sulfur compounds that specifically occur during growth on elemental sulfur, and therefore compared spectra of cultures grown on sulfur with those of cultures grown on sulfide or thiosulfate.
View Article and Find Full Text PDFThe Firmicutes Thermoanaerobacter sulfurigignens and Thermoanaerobacterium thermosulfurigenes convert thiosulfate, forming sulfur globules inside and outside cells. X-ray absorption near-edge structure analysis revealed that the sulfur consisted mainly of sulfur chains with organic end groups similar to sulfur formed in purple sulfur bacteria, suggesting the possibility that the process of sulfur globule formation by bacteria is an ancient feature.
View Article and Find Full Text PDFThe purple sulfur bacterium Allochromatium vinosum can use elemental sulfur as an electron donor for anoxygenic photosynthesis. The elemental sulfur is taken up, transformed into intracellular sulfur globules and oxidized to sulfate. Commercially available "elemental" sulfur usually consists of the two species cyclo-octasulfur and polymeric sulfur.
View Article and Find Full Text PDFMost transformations within the sulfur cycle are controlled by the biosphere, and deciphering the abiotic and biotic nature and turnover of sulfur is critical to understand the geochemical and ecological changes that have occurred throughout the Earth's history. Here, synchrotron radiation-based sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy is used to examine sulfur speciation in natural microbial mats from two aphotic (cave) settings. Habitat geochemistry, microbial community compositions, and sulfur isotope systematics were also evaluated.
View Article and Find Full Text PDF