Angstrom-confined solvents in 2D laminates can travel through interlayer spacings, through gaps between adjacent sheets, and via in-plane pores. Among these, experimental access to investigate the mass transport through in-plane pores is lacking. Our experiments allow an understanding of this mass transport via the controlled variation of oxygen functionalities, size and density of in-plane pores in graphene oxide membranes.
View Article and Find Full Text PDFIn this work, we have studied the pH-dependent surface charge nature of nanoporous graphene. This has been investigated by membrane potential and by streaming current measurements, both with varying pH. We observed a lowering of the membrane potential with decreasing pH for a fixed concentration gradient of potassium chloride (KCl) in the Donnan dominated regime.
View Article and Find Full Text PDFNanoporous graphene displays salt-dependent ion permeation. In this work, we investigate the differences in Donnan potentials arising between reservoirs, separated by a perforated graphene membrane, containing different cations. We compare the case of monovalent cations interacting with nanoporous graphene with the case of bivalent cations.
View Article and Find Full Text PDFTwo-dimensional molybdenum-disulfide (MoS2) catalysts can achieve high catalytic activity for the hydrogen evolution reaction upon appropriate modification of their surface. The intrinsic inertness of the compound's basal planes can be overcome by either increasing the number of catalytically active edge sites or by enhancing the activity of the basal planes via a controlled creation of sulfur vacancies. Here, we report a novel method of activating the MoS2 surface using swift heavy ion irradiation.
View Article and Find Full Text PDFHigh resolution AFM imaging of swift heavy ion irradiated muscovite mica under grazing incidence provides detailed insight into the created nanostructure features. Swift heavy ions under grazing incidence form a complex track structure along the surface, which consists of a double track of nanohillocks at the impact site accompanied by a single, several 100 nm long protrusion. Detailed track studies by varying the irradiation parameters, i.
View Article and Find Full Text PDFGraphene is currently investigated as a promising membrane material in which selective pores can be created depending on the requirements of the application. However, to handle large-area nanoporous graphene a stable support material is needed. Here, we report on composite membranes consisting of large-area single layer nanoporous graphene supported by a porous polymer.
View Article and Find Full Text PDFA novel form of ion-tracks, namely nanogrooves and hillocks, are observed on CaF2 after irradiation with xenon and lead ions of about 100 MeV kinetic energy. The irradiation is performed under grazing incidence (0.3°-3°) which forces the track to a region in close vicinity to the surface.
View Article and Find Full Text PDFThe controlled creation of defects in silicon carbide represents a major challenge. A well-known and efficient tool for defect creation in dielectric materials is the irradiation with swift (E(kin) ≥ 500 keV/amu) heavy ions, which deposit a significant amount of their kinetic energy into the electronic system. However, in the case of silicon carbide, a significant defect creation by individual ions could hitherto not be achieved.
View Article and Find Full Text PDFIn the search to develop tools that are able to modify surfaces on the nanometre scale, the use of heavy ions with energies of several tens of MeV is becoming more attractive. Low-energy ions are mostly stopped by nuclei, which causes the energy to be dissipated over a large volume. In the high-energy regime, however, the ions are stopped by electronic excitations, and the extremely local (approximately 10 nm3) nature of the energy deposition leads to the creation of nanosized 'hillocks' or nanodots under normal incidence.
View Article and Find Full Text PDF