Strength, ductility, and failure properties of metals are tailored by plastic deformation routes. Predicting these properties requires modeling of the structural dynamics and stress evolution taking place on several length scales. Progress has been hampered by a lack of representative 3D experimental data at industrially relevant degrees of deformation.
View Article and Find Full Text PDFNovel focusing optics composed of twin paraboloidal capillaries coated with Pt, for laboratory X-ray sources are presented and characterized. The optics are designed to focus the X-rays, resulting in an achromatic focused beam with photon energies up to 40 keV. The performance of the optics under different operational conditions is studied by comparing the energy-photon count spectra of the direct and focused beams.
View Article and Find Full Text PDFThe structures, strain fields, and defect distributions in solid materials underlie the mechanical and physical properties across numerous applications. Many modern microstructural microscopy tools characterize crystal grains, domains and defects required to map lattice distortions or deformation, but are limited to studies of the (near) surface. Generally speaking, such tools cannot probe the structural dynamics in a way that is representative of bulk behavior.
View Article and Find Full Text PDFThe dynamics of lattice vibrations govern many material processes, such as acoustic wave propagation, displacive phase transitions, and ballistic thermal transport. The maximum velocity of these processes and their effects is determined by the speed of sound, which therefore defines the temporal resolution (picoseconds) needed to resolve these phenomena on their characteristic length scales (nanometers). Here, we present an X-ray microscope capable of imaging acoustic waves with subpicosecond resolution within mm-sized crystals.
View Article and Find Full Text PDFLiquid plays an important role in bone that has a complex 3D hierarchical pore structure. However, liquid (water) is difficult to discern from e.g.
View Article and Find Full Text PDFThe use of a phase-retrieval technique for propagation-based phase-contrast neutron imaging with a polychromatic beam is demonstrated. This enables imaging of samples with low absorption contrast and/or improving the signal-to-noise ratio to facilitate time-resolved measurements. A metal sample, designed to be close to a phase pure object, and a bone sample with canals partially filled with DO were used for demonstrating the technique.
View Article and Find Full Text PDFThree-dimensional X-ray diffraction microscopy, 3DXRD, has become an established tool for orientation and strain mapping of bulk polycrystals. However, it is limited to a finite spatial resolution of ∼1.5-3 µm.
View Article and Find Full Text PDFConnecting a bulk material's microscopic defects to its macroscopic properties is an age-old problem in materials science. Long-range interactions between dislocations (line defects) are known to play a key role in how materials deform or melt, but we lack the tools to connect these dynamics to the macroscopic properties. We introduce time-resolved dark-field x-ray microscopy to directly visualize how dislocations move and interact over hundreds of micrometers deep inside bulk aluminum.
View Article and Find Full Text PDFWe report on a new X-ray imaging method, which generalizes Bragg ptychography to 3D mapping of embedded crystalline volumes within thick specimens. The sample is probed by a pencil X-ray beam. The diffracted beam is magnified by an objective and passes through a slit in the image plane to be monitored by a 2D detector in the far-field of the image plane.
View Article and Find Full Text PDFNon-destructive orientation mapping is an important characterization tool in materials science and geoscience for understanding and/or improving material properties based on their grain structure. Confocal Raman microscopy is a powerful non-destructive technique for chemical mapping of organic and inorganic materials. Here we demonstrate orientation mapping by means of Polarized Raman Microscopy (PRM).
View Article and Find Full Text PDFThe misfit dislocations formed at heteroepitaxial interfaces create long-ranging strain fields in addition to the epitaxial strain. For systems with strong lattice coupling, such as ferroic oxides, this results in unpredictable and potentially debilitating functionality and device performance. In this work, we use dark-field X-ray microscopy to map the lattice distortions around misfit dislocations in an epitaxial film of bismuth ferrite (BiFeO), a well-known multiferroic.
View Article and Find Full Text PDFBragg coherent diffraction imaging (BCDI) is a powerful X-ray imaging technique for crystalline materials, providing high resolution maps of structure and strain. The technique is typically used to study a small isolated object, and is in general not compatible with a bulk polycrystalline sample, due to overlap of diffraction signals from various crystalline elements. In this paper, we present an imaging method for bulk samples, based on the use of a coherent source.
View Article and Find Full Text PDFThe characteristic functionality of ferroelectric materials is due to the symmetry of their crystalline structure. As such, ferroelectrics lend themselves to design approaches that manipulate this structural symmetry by introducing extrinsic strain. Using in situ dark-field X-ray microscopy to map lattice distortions around deeply embedded domain walls and grain boundaries in BaTiO, we reveal that symmetry-breaking strain fields extend up to several micrometres from domain walls.
View Article and Find Full Text PDFThe fractional Fourier transform (FrFT) is introduced as a tool for numerical simulations of X-ray wavefront propagation. By removing the strict sampling requirements encountered in typical Fourier optics, simulations using the FrFT can be carried out with much decreased detail, allowing, for example, on-line simulation during experiments. Moreover, the additive index property of the FrFT allows the propagation through multiple optical components to be simulated in a single step, which is particularly useful for compound refractive lenses (CRLs).
View Article and Find Full Text PDFA comprehensive optical description of compound refractive lenses (CRLs) in condensing and full-field X-ray microscopy applications is presented. The formalism extends ray-transfer matrix analysis by accounting for X-ray attenuation by the lens material. Closed analytical expressions for critical imaging parameters such as numerical aperture, spatial acceptance (vignetting), chromatic aberration and focal length are provided for both thin- and thick-lens imaging geometries.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
April 2016
Classical reconstruction methods for phase-contrast tomography consist of two stages: phase retrieval and tomographic reconstruction. A novel algebraic method combining the two was suggested by Kostenko et al. [Opt.
View Article and Find Full Text PDFA multigrain indexing algorithm for use with samples comprising an arbitrary number of known or unknown phases is presented. No crystallographic knowledge is required. The algorithm applies to data acquired with a monochromatic beam and a conventional two-dimensional detector for diffraction.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
September 2010
We introduce the binary superposed phase retrieval problem that aims at reconstructing multiple 0/1-valued functions with nonoverlapping bounded supports from moduli of superpositions of several displaced copies of their individual Fourier transforms. We discuss an application in coherent diffraction imaging of crystalline objects, propose two algorithms, and evaluate their performance by means of simulations.
View Article and Find Full Text PDF