Myrtle rust, caused by the fungus , is a serious disease, which affects many Myrtaceae species. Commercial nurseries that propagate Myrtaceae species are prone to myrtle rust and require a reliable method that allows previsual and early detection of the disease. This study uses time-series thermal imagery and visible-to-short-infrared spectroscopy measurements acquired over 10 days from 81 rose apple plants () that were either inoculated with myrtle rust or maintained disease-free.
View Article and Find Full Text PDFSoils interact in many ways with metal ions thereby modifying their mobility, phase distribution, plant availability, speciation, and so on. The most prominent of such interactions is sorption. In this study, we investigated the sorption of Pb, Cd, and Cu in five natural soils of Nigerian origin.
View Article and Find Full Text PDFOrganic matter is an important constituent of soils that controls many soil functions and is of vital importance for ecosystem services like climate regulation and food security. Soil organic matter (SOM consists of a wide spectrum of different organic substances that are highly heterogeneous in terms of chemical composition, stability against microbial decomposition and turnover time. SOM is heterogeneously distributed in the soil profile impeding its fast assessment.
View Article and Find Full Text PDFA data set of very high-resolution visible/near infrared hyperspectral images of young trees was recorded to study the effects of herbicides on this invasive species. The camera was fixed on a frame while the potted trees were moved underneath on a conveyor belt. To account for changing illumination conditions, a white reference bar was included at the edge of each image line.
View Article and Find Full Text PDFImaging spectroscopy of vegetation requires methods for scaling and generalizing optical signals that are reflected, transmitted and emitted in the solar wavelength domain from single leaves and observed at the level of canopies by proximal sensing, airborne and satellite spectroradiometers. The upscaling embedded in imaging spectroscopy retrievals and validations of plant biochemical and structural traits is challenged by natural variability and measurement uncertainties. Sources of the leaf-to-canopy upscaling variability and uncertainties are reviewed with respect to: (1) implementation of retrieval algorithms and (2) their parameterization and validation of quantitative products through in situ field measurements.
View Article and Find Full Text PDF