STAT5B is a vital transcription factor for lymphocytes. Here, function of two STAT5B mutations from human T cell leukemias: one substituting tyrosine 665 with phenylalanine (STAT5B ), the other with histidine (STAT5B ) was interrogated. modeling predicted divergent energetic effects on homodimerization with a range of pathogenicity.
View Article and Find Full Text PDFMost heritable diseases are polygenic. To comprehend the underlying genetic architecture, it is crucial to discover the clinically relevant epistatic interactions (EIs) between genomic single nucleotide polymorphisms (SNPs) (1-3). Existing statistical computational methods for EI detection are mostly limited to pairs of SNPs due to the combinatorial explosion of higher-order EIs.
View Article and Find Full Text PDFDuring pregnancy, mammary tissue undergoes expansion and differentiation, leading to lactation, a process regulated by the hormone prolactin through the JAK2-STAT5 pathway. STAT5 activation is key to successful lactation making the mammary gland an ideal experimental system to investigate the impact of human missense mutations on mammary tissue homeostasis. Here, we investigated the effects of two human variants in the STAT5B SH2 domain, which convert tyrosine 665 to either phenylalanine (Y665F) or histidine (Y665H), both shown to activate STAT5B in cell culture.
View Article and Find Full Text PDFIntroduction: During glomerular diseases, podocyte-specific pathways can modulate the intensity of histological disease and prognosis. The therapeutic targeting of these pathways could thus improve the management and prognosis of kidney diseases. The Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathway, classically described in immune cells, has been recently described in detail in intrinsic kidney cells.
View Article and Find Full Text PDFTranscription enhancers are genomic sequences regulating common and tissue-specific genes and their disruption can contribute to human disease development and progression. Klotho, a sexually dimorphic gene specifically expressed in kidney, is well-linked to kidney dysfunction and its deletion from the mouse genome leads to premature aging and death. However, the sexually dimorphic regulation of Klotho is not understood.
View Article and Find Full Text PDFTranscription enhancers are genomic sequences regulating common and tissue-specific genes and their disruption can contribute to human disease development and progression. , a sexually dimorphic gene specifically expressed in kidney, is well-linked to kidney dysfunction and its deletion from the mouse genome leads to premature aging and death. However, the sexually dimorphic regulation of is not understood.
View Article and Find Full Text PDFThe COVID-19 pandemic, driven by the SARS-CoV-2 virus and its variants, highlights the important role of understanding host-viral molecular interactions influencing infection outcomes. Alternative splicing post-infection can impact both host responses and viral replication. We analyzed RNA splicing patterns in immune cells across various SARS-CoV-2 variants, considering immunization status.
View Article and Find Full Text PDFBulk RNA sequencing (RNA-seq) of blood is typically used for gene expression analysis in biomedical research but is still rarely used in clinical practice. In this study, we propose that RNA-seq should be considered a diagnostic tool, as it offers not only insights into aberrant gene expression and splicing but also delivers additional readouts on immune cell type composition as well as B-cell and T-cell receptor (BCR/TCR) repertoires. We demonstrate that RNA-seq offers insights into a patient's immune status via integrative analysis of RNA-seq data from patients infected with various SARS-CoV-2 variants (in total 196 samples with up to 200 million reads sequencing depth).
View Article and Find Full Text PDFMost heritable diseases are polygenic. To comprehend the underlying genetic architecture, it is crucial to discover the clinically relevant epistatic interactions (EIs) between genomic single nucleotide polymorphisms (SNPs). Existing statistical computational methods for EI detection are mostly limited to pairs of SNPs due to the combinatorial explosion of higher-order EIs.
View Article and Find Full Text PDFBulk RNA sequencing (RNA-seq) of blood is typically used for gene expression analysis in biomedical research but is still rarely used in clinical practice. In this study, we argue that RNA-seq should be considered a routine diagnostic tool, as it offers not only insights into aberrant gene expression and splicing but also delivers additional readouts on immune cell type composition as well as B-cell and T-cell receptor (BCR/TCR) repertoires. We demonstrate that RNA-seq offers vital insights into a patient's immune status via integrative analysis of RNA-seq data from patients infected with various SARS-CoV-2 variants (in total 240 samples with up to 200 million reads sequencing depth).
View Article and Find Full Text PDFThe COVID-19 pandemic, caused by the coronavirus SARS-CoV-2, and its subsequent variants has underscored the importance of understanding the host-viral molecular interactions to devise effective therapeutic strategies. A significant aspect of these interactions is the role of alternative splicing in modulating host responses and viral replication mechanisms. Our study sought to delineate the patterns of alternative splicing of RNAs from immune cells across different SARS-CoV-2 variants and vaccination statuses, utilizing a robust dataset of 190 RNA-seq samples from our previous studies, encompassing an average of 212 million reads per sample.
View Article and Find Full Text PDFInfection-induced T cell responses must be properly tempered and terminated to prevent immuno-pathology. Using transgenic mice, we demonstrate that T cell intrinsic STAT1 signaling is required to curb inflammation during acute infection with . Specifically, we report that mice lacking STAT1 selectively in T cells expel parasites but ultimately succumb to lethal immuno-pathology characterized by aberrant Th1-type responses with reduced IL-10 and increased IL-13 production.
View Article and Find Full Text PDFBackground: Eukaryotic gene expression is controlled by cis-regulatory elements (CREs), including promoters and enhancers, which are bound by transcription factors (TFs). Differential expression of TFs and their binding affinity at putative CREs determine tissue- and developmental-specific transcriptional activity. Consolidating genomic datasets can offer further insights into the accessibility of CREs, TF activity, and, thus, gene regulation.
View Article and Find Full Text PDFDuring lactation, specialized cells in the mammary gland produce milk to nourish the young. Milk protein genes are controlled by distal enhancers activating expression several hundred-fold during lactation. However, the role of promoter elements is not understood.
View Article and Find Full Text PDFMotivation: Circular RNAs (circRNAs) are long non-coding RNAs (lncRNAs) often associated with diseases and considered potential biomarkers for diagnosis and treatment. Among other functions, circRNAs have been shown to act as microRNA (miRNA) sponges, preventing the role of miRNAs that repress their targets. However, there is no pipeline to systematically assess the sponging potential of circRNAs.
View Article and Find Full Text PDFRegulation of high-density loci harboring genes with different cell-specificities remains a puzzle. Here we investigate a locus that evolved through gene duplication and contains eight genes and 20 candidate regulatory elements, including a super-enhancer. Five genes are expressed in mammary glands and account for 50% of all mRNAs during lactation, two are salivary-specific and one has dual specificity.
View Article and Find Full Text PDFPatients with chronic lymphocytic leukemia (CLL) treated with B-cell pathway inhibitors and anti-CD20 antibodies exhibit low humoral response rates following SARS-CoV-2 vaccination. To investigate this observation, a prospective single-institution study was conducted comparing peripheral blood mononuclear cell transcriptional response with antibody and T-cell response rates following heterologous BNT162b2/ChAdOx1 vaccination of 15 patients with CLL/small lymphocytic lymphoma (SLL). Two-dose antibody response rate was 40%, increasing to 53% after booster.
View Article and Find Full Text PDFActivated lymphocytes adapt their metabolism to meet the energetic and biosynthetic demands imposed by rapid growth and proliferation. Common gamma chain (cγ) family cytokines are central to these processes, but the role of downstream signal transducer and activator of transcription 5 (STAT5) signaling, which is engaged by all cγ members, is poorly understood. Using genome-, transcriptome-, and metabolome-wide analyses, we demonstrate that STAT5 is a master regulator of energy and amino acid metabolism in CD4 T helper cells.
View Article and Find Full Text PDFOmicron is currently the dominant SARS-CoV-2 variant and several sublineages have emerged. Questions remain about the impact of previous SARS-CoV-2 exposure on cross-variant immune responses elicited by the SARS-CoV-2 Omicron sublineage BA.2 compared to BA.
View Article and Find Full Text PDFPatients with chronic lymphocytic leukemia (CLL) treated with B-cell pathway inhibitors and anti-CD20 antibodies exhibit low humoral response rate (RR) following SARS-CoV-2 vaccination. To investigate the relationship between the initial transcriptional response to vaccination with ensuing B and T cell immune responses, we performed a comprehensive immune transcriptome analysis flanked by antibody and T cell assays in peripheral blood prospectively collected from 15 CLL/SLL patients vaccinated with heterologous BNT162b2/ChAdOx1 with follow up at a single institution. The two-dose antibody RR was 40% increasing to 53% after booster.
View Article and Find Full Text PDF