Magnesium aluminates (MgO)(AlO) belong to a class of refractory materials with important applications in glass and glass-ceramic technologies. Typically, these materials are fabricated from high-temperature molten phases. However, due to the difficulties in making measurements at very high temperatures, information on liquid-state structure and properties is limited.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2025
Hypothesis: Mesophase dispersions are promising colloids for removing micropollutants from water. We hypothesized that the complex internal nanostructure and tunable lipid/water interface amounts play a crucial role in absorbed quantities. Modifications in interfacial organization within the particles while trapping the micropollutant is assumed.
View Article and Find Full Text PDFCoordinating growth and patterning is essential for eukaryote morphogenesis. In plants, auxin is a key regulator of morphogenesis implicated throughout development. Despite this central role, our understanding of how auxin coordinates cell fate and growth changes is still limited.
View Article and Find Full Text PDFWe report a systematic diffraction study of two "water-in-salt" electrolytes and a "water-in-bisalt" electrolyte combining high-energy X-ray diffraction (HEXRD) with polarized and unpolarized neutron diffraction (ND) on both HO and DO solutions. The measurements provide three independent combinations of correlations between the different pairs of atom types that reveal the short- and intermediate-range order in considerable detail. The ND interference functions show pronounced peaks around a scattering vector ∼ 0.
View Article and Find Full Text PDFThe characteristic property of a liquid, discriminating it from a solid, is its fluidity, which can be expressed by a velocity field. The reaction of the velocity field on forces is enshrined in the transport parameter viscosity. In contrast, a solid reacts to forces elastically through a displacement field, the particles are trapped in their potential minimum.
View Article and Find Full Text PDFA multiedge study of the local structure of lithium borate glasses and melts has been carried out using X-ray Raman scattering (XRS) as a function of temperature. Thanks to a wide range of compositions, from pure BO up to the metaborate composition, we are able to finely interpret the modifications of the local environment of both the boron and oxygen atoms in terms of boron coordination number, formation of nonbridging oxygens (NBOs), and polymerization degree of the borate framework as a function of temperature and composition. A temperature-induced B to B conversion is observed above the glass transition temperature () from the glass to the melt from the triborate composition up to the metaborate composition.
View Article and Find Full Text PDFAlthough gas exsolution is a major driving force behind explosive volcanic eruptions, viscosity is critical in controlling the escape of bubbles and switching between explosive and effusive behavior. Temperature and composition control melt viscosity, but crystallization above a critical volume (>30 volume %) can lock up the magma, triggering an explosion. Here, we present an alternative to this well-established paradigm by showing how an unexpectedly small volume of nano-sized crystals can cause a disproportionate increase in magma viscosity.
View Article and Find Full Text PDFMost sorghum biomass accumulates in stem secondary cell walls (SCW). As sorghum stems are used as raw materials for various purposes such as feed, energy and fiber reinforced polymers, identifying the genes responsible for SCW establishment is highly important. Taking advantage of studies performed in model species, most of the structural genes contributing at the molecular level to the SCW biosynthesis in sorghum have been proposed while their regulatory factors have mostly not been determined.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2020
Crystalline calcium aluminates are a critical setting agent in cement. To date, few have explored the microscopic and dynamic mechanism of the transitions from molten aluminate liquids, through the supercooled state to glassy and crystalline phases, during cement clinker production. Herein, the first in situ measurements of viscosity and density are reported across all the principal molten phases, relevant to their eventual crystalline structures.
View Article and Find Full Text PDFQuasi phase-pure (>98 wt %) MAX phase solid solution ceramics with the (Zr,Ti)(Al,Sn)C stoichiometry and variable Zr/Ti ratios were synthesized by both reactive hot pressing and pressureless sintering of ZrH, TiH, Al, Sn, and C powder mixtures. The influence of the different processing parameters, such as applied pressure and sintering atmosphere, on phase purity and microstructure of the produced ceramics was investigated. The addition of Sn to the (Zr,Ti)AlC system was the key to achieve phase purity.
View Article and Find Full Text PDFPhys Chem Chem Phys
November 2018
We report the study of high-temperature melts (1600-2300 °C) and related glasses in the SrO-Al2O3-SiO2 phase diagram considering three series: (i) depolymerized ([SrO]/[Al2O3] = 3); (ii) fully polymerized ([SrO]/[Al2O3] = 1); and (iii) per-aluminous ([SrO]/[Al2O3] < 1). By considering the results from high-temperature 27Al NMR and high-temperature neutron diffraction, we demonstrate that the structure of the polymerized melts is controlled by a close-to-random distribution of Al and Si in the tetrahedral sites, while the depolymerized melts show smaller rings with a possible loss of non-bridging oxygens on AlO4 units during cooling for high-silica compositions. A few five-fold coordinated VAl sites are present in all compositions, except per-aluminous ones where high amounts of high-coordinated aluminium are found in glasses and melts with complex temperature dependence.
View Article and Find Full Text PDFThe structure of strontium glasses with the composition (SiO)(AlO) (SrO) ( R = [SrO]/[AlO] = 1) and (SiO)(AlO) (SrO) ( R = 3) has been explored experimentally over both short- and intermediate-length scales using neutron diffraction, Al and Si nuclear magnetic resonance, and classical molecular dynamics simulations in model systems containing around 10 000 atoms. We aim at understanding the structural role of aluminum and strontium as a function of the chemical composition of these glasses. The short- and medium-range structure such as aluminum coordination, bond angle distribution, Q distribution, and oxygen speciation have been systematically studied.
View Article and Find Full Text PDFBelow the melting temperature T, crystals are the stable phase of typical elemental or molecular systems. However, cooling down a liquid below T, crystallization is anything but inevitable. The liquid can be supercooled, eventually forming a glass below the glass transition temperature T.
View Article and Find Full Text PDFBackground: The acoustic levitation technique is a useful sample handling method for small solid and liquids samples, suspended in air by means of an ultrasonic field. This method was previously used at synchrotron sources for studying pharmaceutical liquids and protein solutions using x-ray diffraction and small angle x-ray scattering (SAXS).
Methods: In this work we combined for the first time this containerless method with small angle neutron scattering (SANS) and synchrotron radiation circular dichroism (SRCD) to study the structural behavior of proteins in solutions during the water evaporation.
Calcium aluminosilicate CaO-Al2O3-SiO2 (CAS) melts with compositions (CaO-SiO2)(x)(Al2O3)(1-x) for x < 0.5 and (Al2O3)(x)(SiO2)(1-x) for x ≥ 0.5 are studied using neutron diffraction with aerodynamic levitation and density functional theory molecular dynamics modelling.
View Article and Find Full Text PDFWe report the redox status (profiles) for specific populations of cells that comprise the Arabidopsis root tip. For recently germinated, 3-5-day-old seedlings we show that the region of the root tip with the most reduced redox status includes the root cap initials, the quiescent center and the most distal portion of the proximal meristem, and coincides with (overlays) the region of the auxin maximum. As one moves basally, further into the proximal meristem, and depending on the growth conditions, the redox status becomes more oxidized, with a 5-10 mV difference in redox potential between the two borders delimiting the proximal meristem.
View Article and Find Full Text PDFPremise Of The Study: Competition among pollen grains from a single donor is expected to increase the quality of the offspring produced because of the recessive deleterious alleles expressed during pollen-tube growth. However, evidence for such an effect is inconclusive; a large number of studies suffer from confounding variation in pollen competition with variation in pollen load.
Methods: In this study, we tested the effect of pollen competition on offspring performance independently of pollen-load variation.
The high pressure structure of liquid and glassy anorthite (CaAl(2)Si(2)O(8)) and calcium aluminate (CaAl(2)O(4)) glass was measured by using in situ synchrotron x-ray diffraction in a diamond anvil cell up to 32.4(2) GPa. The results, combined with ab initio molecular dynamics and classical molecular dynamics simulations using a polarizable ion model, reveal a continuous increase in Al coordination by oxygen, with 5-fold coordinated Al dominating at 15 GPa and a preponderance of 6-fold coordinated Al at higher pressures.
View Article and Find Full Text PDFThe structure of the fragile glass-forming material CaAl(2)O(4) was measured by applying the method of neutron diffraction with Ca isotope substitution to the laser-heated aerodynamically levitated liquid at 1973(30) K and to the glass at 300(1) K. The results, interpreted with the aid of molecular dynamics simulations, reveal key structural modifications on multiple length scales. Specifically, there is a reorganization on quenching that leads to an almost complete breakdown of the AlO(5) polyhedra and threefold coordinated oxygen atoms present in the liquid, and to their replacement by a predominantly corner-sharing network of AlO(4) tetrahedra in the glass.
View Article and Find Full Text PDFIn this contribution the effects of the homologous disaccharides trehalose and sucrose on both water and hydrated lysozyme dynamics are considered by determining the mean square displacement (MSD) from elastic incoherent neutron scattering (EINS) experiments. The self-distribution function (SDF) procedure is applied to the data collected, by use of IN13 and IN10 spectrometers (Institute Laue Langevin, France), on trehalose and sucrose aqueous mixtures (at a concentration corresponding to 19 water molecules per disaccharide molecule), and on dry and hydrated (H(2)O and D(2)O) lysozyme also in the presence of the disaccharides. As a result, above the glass transition temperature of water, the MSD of the water-trehalose system is lower than that of the water-sucrose system.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.