High- molecular magnets have amassed much promise; however, the long-standing obstacle for its practical applications is the inaccessibility of high-temperature molecular magnets showing dynamic and nonvolatile magnetization control. In addition, its functional durability is prone to degradation in oxygen and heat. Here, we introduce a rapid prototyping and stabilizing strategy for high (360 K) molecular magnets with precise spatial control in geometry.
View Article and Find Full Text PDFThe isotope effect is studied in the magneto-electroluminescence (MEL) and pulsed electrically detected magnetic resonance of organic light-emitting diodes based on thermally activated delayed fluorescence (TADF) from donor-acceptor exciplexes that are either protonated (H) or deuterated (D). It is found that at ambient temperature, the exchange of H to D has no effect on the spin-dependent current and MEL responses in the devices. However, at cryogenic temperatures, where the reverse intersystem crossing (RISC) from triplet to singlet exciplex diminishes, a pronounced isotope effect is observed.
View Article and Find Full Text PDFSpin waves, quantized as magnons, have low energy loss and magnetic damping, which are critical for devices based on spin-wave propagation needed for information processing devices. The organic-based magnet [V(TCNE) ; TCNE = tetracyanoethylene; x ≈ 2] has shown an extremely low magnetic damping comparable to, for example, yttrium iron garnet (YIG). The excitation, detection, and utilization of coherent and non-coherent spin waves on various modes in V(TCNE) is demonstrated and show that the angular momentum carried by microwave-excited coherent spin waves in a V(TCNE) film can be transferred into an adjacent Pt layer via spin pumping and detected using the inverse spin Hall effect.
View Article and Find Full Text PDFWe have experimentally tested whether spin-transport and charge-transport in pristine π-conjugated polymer films at room temperature occur via the same electronic processes. We have obtained the spin diffusion coefficient of several π-conjugated polymer films from the spin diffusion length measured by the technique of inverse spin Hall effect and the spin relaxation time measured by pulsed electrically detected magnetic resonance spectroscopy. The charge diffusion coefficient was obtained from the time-of-flight mobility measurements on the same films.
View Article and Find Full Text PDFHybrid organic-inorganic perovskites have shown great promise for spintronic applications due to their large spin-orbit coupling induced by the Pb and halogen atoms. Particularly, the large observed surface-induced Rashba splitting in CHNHPbBr indicates efficient spin-current-to-charge-current (StC) conversion, which, however, has not been demonstrated yet. In this work, the StC conversion efficiency in ferromagnet/CHNHPbBr-based devices is studied using the pulsed spin-pumping technique measured by the inverse spin Hall effect.
View Article and Find Full Text PDF