Publications by authors named "Henkjan Honing"

The aim of this chapter is to give an overview of how the perception of rhythmic temporal regularity such as a regular beat in music can be studied in human adults, human newborns, and nonhuman primates using event-related brain potentials (ERPs). First, we discuss different aspects of temporal structure in general, and musical rhythm in particular, and we discuss the possible mechanisms underlying the perception of regularity (e.g.

View Article and Find Full Text PDF

Music is a cultural activity universally present in all human societies. Several hypotheses have been formulated to understand the possible origins of music and the reasons for its emergence. Here, we test two hypotheses: (1) the coalition signaling hypothesis which posits that music could have emerged as a tool to signal cooperative intent and signal strength of alliances and (2) music as a strategy to deter potential predators.

View Article and Find Full Text PDF

Newborn infants have been shown to extract temporal regularities from sound sequences, both in the form of learning regular sequential properties, and extracting periodicity in the input, commonly referred to as a regular pulse or the 'beat'. However, these two types of regularities are often indistinguishable in isochronous sequences, as both statistical learning and beat perception can be elicited by the regular alternation of accented and unaccented sounds. Here, we manipulated the isochrony of sound sequences in order to disentangle statistical learning from beat perception in sleeping newborn infants in an EEG experiment, as previously done in adults and macaque monkeys.

View Article and Find Full Text PDF

Zebra finches rely mainly on syllable phonology rather than on syllable sequence when they discriminate between two songs. However, they can also learn to discriminate two strings containing the same set of syllables by their sequence. How learning about the phonological characteristics of syllables and their sequence relate to each other and to the composition of the stimuli is still an open question.

View Article and Find Full Text PDF

The two target articles address the origins of music in complementary ways. However, both proposals focus on overt musical behaviour, largely ignoring the role of perception and cognition, and they blur the boundaries between the potential origins of language and music. To resolve this, an alternative research strategy is proposed that focuses on the core cognitive components of musicality.

View Article and Find Full Text PDF

Humans perceive and spontaneously move to one or several levels of periodic pulses (a meter, for short) when listening to musical rhythm, even when the sensory input does not provide prominent periodic cues to their temporal location. Here, we review a multi-levelled framework to understanding how external rhythmic inputs are mapped onto internally represented metric pulses. This mapping is studied using an approach to quantify and directly compare representations of metric pulses in signals corresponding to sensory inputs, neural activity and behaviour (typically body movement).

View Article and Find Full Text PDF

This theme issue assembles current studies that ask how and why precise synchronization and related forms of rhythm interaction are expressed in a wide range of behaviour. The studies cover human activity, with an emphasis on music, and social behaviour, reproduction and communication in non-human animals. In most cases, the temporally aligned rhythms have short-from several seconds down to a fraction of a second-periods and are regulated by central nervous system pacemakers, but interactions involving rhythms that are 24 h or longer and originate in biological clocks also occur.

View Article and Find Full Text PDF

Music and language have long been considered two distinct cognitive faculties governed by domain-specific cognitive and neural mechanisms. Recent work into the domain-specificity of pitch processing in both domains appears to suggest pitch processing to be governed by shared neural mechanisms. The current study aimed to explore the domain-specificity of pitch processing by simultaneously presenting pitch contours in speech and music to speakers of a tonal language, and measuring behavioral response and event-related potentials (ERPs).

View Article and Find Full Text PDF

psychology of music require cross-cultural approaches, yet the vast majority of work in the field to date has been conducted with Western participants and Western music. For cross-cultural research to thrive, it will require collaboration between people from different disciplinary backgrounds, as well as strategies for overcoming differences in assumptions, methods, and terminology. This position paper surveys the current state of the field and offers a number of concrete recommendations focused on issues involving ethics, empirical methods, and definitions of "music" and "culture.

View Article and Find Full Text PDF

Predicting the timing of incoming information allows the brain to optimize information processing in dynamic environments. Behaviorally, temporal expectations have been shown to facilitate processing of events at expected time points, such as sounds that coincide with the beat in musical rhythm. Yet, temporal expectations can develop based on different forms of structure in the environment, not just the regularity afforded by a musical beat.

View Article and Find Full Text PDF

Background: Previous literature has shown a putative relationship between playing a musical instrument and a benefit in various cognitive domains. However, to date it still remains unknown whether the exposure to a musically-enriched environment instead of playing an instrument yourself might also increase cognitive domains such as language, mathematics or executive sub-functions such as for example planning or working memory in primary school children.

Design: Cross-sectional.

View Article and Find Full Text PDF

Charles Darwin suggested the perception of rhythm to be common to all animals. While only recently experimental research is finding some support for this claim, there are also aspects of rhythm cognition that appear to be species-specific, such as the capability to perceive a regular pulse (or beat) in a varying rhythm. In the current study, using EEG, we adapted an auditory oddball paradigm that allows for disentangling the contributions of beat perception and isochrony to the temporal predictability of the stimulus.

View Article and Find Full Text PDF

In recent years, music and musicality have been the focus of an increasing amount of research effort. This has led to a growing role and visibility of the contribution of (bio)musicology to the field of neuroscience and cognitive sciences at large. While it has been widely acknowledged that there are commonalities between speech, language, and musicality, several researchers explain this by considering musicality as an epiphenomenon of language.

View Article and Find Full Text PDF

Research on the effects of music education on cognitive abilities has generated increasing interest across the scientific community. Nonetheless, longitudinal studies investigating the effects of structured music education on cognitive sub-functions are still rare. Prime candidates for investigating a relationship between academic achievement and music education appear to be executive functions such as planning, working memory, and inhibition.

View Article and Find Full Text PDF

Despite differences in their function and domain-specific elements, syntactic processing in music and language is believed to share cognitive resources. This study aims to investigate whether the simultaneous processing of language and music share the use of a common syntactic processor or more general attentional resources. To investigate this matter we tested musicians and non-musicians using visually presented sentences and aurally presented melodies containing syntactic local and long-distance dependencies.

View Article and Find Full Text PDF

Perception of a regular beat in music is inferred from different types of accents. For example, increases in loudness cause intensity accents, and the grouping of time intervals in a rhythm creates temporal accents. Accents are expected to occur on the beat: when accents are "missing" on the beat, the beat is more difficult to find.

View Article and Find Full Text PDF

Enculturation is known to shape the perception of meter in music but this is not explicitly accounted for by current cognitive models of meter perception. We hypothesize that the induction of meter is a result of predictive coding: interpreting onsets in a rhythm relative to a periodic meter facilitates prediction of future onsets. Such prediction, we hypothesize, is based on previous exposure to rhythms.

View Article and Find Full Text PDF

We present a hypothesis-driven study on the variation of melody phrases in a collection of Dutch folk songs. We investigate the variation of phrases within the folk songs through a pattern matching method which detects occurrences of these phrases within folk song variants, and ask the question: do the phrases which show less variation have different properties than those which do? We hypothesize that theories on melody recall may predict variation, and as such, investigate phrase length, the position and number of repetitions of a given phrase in the melody in which it occurs, as well as expectancy and motif repetivity. We show that all of these predictors account for the observed variation to a moderate degree, and that, as hypothesized, those phrases vary less which are rather short, contain highly expected melodic material, occur relatively early in the melody, and contain small pitch intervals.

View Article and Find Full Text PDF

Whether pitch in language and music is governed by domain-specific or domain-general cognitive mechanisms is contentiously debated. The aim of the present study was to investigate whether mechanisms governing pitch contour perception operate differently when pitch information is interpreted as either speech or music. By modulating listening mode, this study aspired to demonstrate that pitch contour perception relies on domain-specific cognitive mechanisms, which are regulated by top-down influences from language and music.

View Article and Find Full Text PDF

While humans can easily entrain their behavior with the beat in music, this ability is rare among animals. Yet, comparative studies in non-human species are needed if we want to understand how and why this ability evolved. Entrainment requires two abilities: (1) recognizing the regularity in the auditory stimulus and (2) the ability to adjust the own motor output to the perceived pattern.

View Article and Find Full Text PDF

Beat perception is the ability to perceive temporal regularity in musical rhythm. When a beat is perceived, predictions about upcoming events can be generated. These predictions can influence processing of subsequent rhythmic events.

View Article and Find Full Text PDF

Beat deafness, a recently documented form of congenital amusia, provides a unique window into functional specialization of neural circuitry for the processing of musical stimuli: Beat-deaf individuals exhibit deficits that are specific to the detection of a regular beat in music and the ability to move along with a beat. Studies on the neural underpinnings of beat processing in the general population suggest that the auditory system is capable of pre-attentively generating a predictive model of upcoming sounds in a rhythmic pattern, subserved largely within auditory cortex and reflected in mismatch negativity (MMN) and P3 event-related potential (ERP) components. The current study examined these neural correlates of beat perception in two beat-deaf individuals, Mathieu and Marjorie, and a group of control participants under conditions in which auditory stimuli were either attended or ignored.

View Article and Find Full Text PDF

The processing of rhythmic events in music is influenced by the induced metrical structure. Two mechanisms underlying this may be temporal attending and temporal prediction. Temporal fluctuations in attentional resources may influence the processing of rhythmic events by heightening sensitivity at metrically strong positions.

View Article and Find Full Text PDF