Prevention of hypertriglyceridemia is one of the biomedical targets in Glycogen Storage Disease type Ia (GSD Ia) patients, yet it is unclear how hypoglycemia links to plasma triglyceride (TG) levels. We analyzed whole-body TG metabolism in normoglycemic (fed) and hypoglycemic (fasted) hepatocyte-specific glucose-6-phosphatase deficient (L-G6pc ) mice. De novo fatty acid synthesis contributed substantially to hepatic TG accumulation in normoglycemic L-G6pc mice.
View Article and Find Full Text PDFDietary protein restriction has been demonstrated to improve metabolic health under various conditions. However, the relevance of ageing and age-related decline in metabolic flexibility on the effects of dietary protein restriction has not been addressed. Therefore, we investigated the effect of short-term dietary protein restriction on metabolic health in young and aged mice.
View Article and Find Full Text PDFBackground And Aims: Glycogen storage disease (GSD) type 1a is an inborn error of metabolism caused by defective glucose-6-phosphatase catalytic subunit (G6PC) activity. Patients with GSD 1a exhibit severe hepatomegaly due to glycogen and triglyceride (TG) accumulation in the liver. We have shown that the activity of carbohydrate response element binding protein (ChREBP), a key regulator of glycolysis and de novo lipogenesis, is increased in GSD 1a.
View Article and Find Full Text PDFUnlabelled: It is a long-standing enigma how glycogen storage disease (GSD) type I patients retain a limited capacity for endogenous glucose production despite the loss of glucose-6-phosphatase activity. Insight into the source of residual endogenous glucose production is of clinical importance given the risk of sudden death in these patients, but so far contradictory mechanisms have been proposed. We investigated glucose-6-phosphatase-independent endogenous glucose production in hepatocytes isolated from a liver-specific GSD Ia mouse model (L-G6pc mice) and performed real-time analysis of hepatic glucose fluxes and glycogen metabolism in L-G6pc mice using state-of-the-art stable isotope methodologies.
View Article and Find Full Text PDFBackground & Aims: The role of the intestine in the maintenance of cholesterol homeostasis increasingly is recognized. Fecal excretion of cholesterol is the last step in the atheroprotective reverse cholesterol transport pathway, to which biliary and transintestinal cholesterol excretion (TICE) contribute. The mechanisms controlling the flux of cholesterol through the TICE pathway, however, are poorly understood.
View Article and Find Full Text PDFStatins are competitive inhibitors of HMG-CoA reductase, the rate-limiting enzyme of cholesterol synthesis. Statins reduce plasma cholesterol levels, but whether this is actually caused by inhibition of de novo cholesterol synthesis has not been clearly established. Using three different statins, we investigated the effects on cholesterol metabolism in mice in detail.
View Article and Find Full Text PDFBackground & Aims: Regulation of bile acid homeostasis in mammals is a complex process regulated via extensive cross-talk between liver, intestine and intestinal microbiota. Here we studied the effects of gut microbiota on bile acid homeostasis in mice.
Methods: Bile acid homeostasis was assessed in four mouse models.
The nuclear receptor FXR acts as an intracellular bile salt sensor that regulates synthesis and transport of bile salts within their enterohepatic circulation. In addition, FXR is involved in control of a variety of crucial metabolic pathways. Four FXR splice variants are known, i.
View Article and Find Full Text PDFBackground & Aims: Glucocorticoids, produced by the adrenal gland under control of the hypothalamic-pituitary-adrenal axis, exert their metabolic actions largely via activation of the glucocorticoid receptor (GR). Synthetic glucocorticoids are widely used as anti-inflammatory and immunosuppressive drugs but their application is hampered by adverse metabolic effects. Recently, it has been shown that GR may regulate several genes involved in murine bile acid (BA) and cholesterol metabolism, yet the physiological relevance hereof is controversial.
View Article and Find Full Text PDFPolyethylene glycol (PEG) is a frequently used osmotic laxative that accelerates gastrointestinal transit. It has remained unclear, however, whether PEG affects intestinal functions. We aimed to determine the effect of PEG treatment on intestinal sterol metabolism.
View Article and Find Full Text PDFAims: Bile acid sequestrants (BAS) and physical activity (RUN) decrease incidence of cardiovascular events. Both treatments are often prescribed, yet it is not known whether their beneficial effects are additive. We assessed the effects of BAS treatment alone and in combination with RUN on cholesterol metabolism, heart function and atherosclerotic lesion size in hypercholesterolemic mice.
View Article and Find Full Text PDFBackground & Aims: Conversion into bile acids represents an important route to remove excess cholesterol from the body. Rev-erbalpha is a nuclear receptor that participates as one of the clock genes in the control of circadian rhythmicity and plays a regulatory role in lipid metabolism and adipogenesis. Here, we investigate a potential role for Rev-erbalpha in the control of bile acid metabolism via the regulation of the neutral bile acid synthesis pathway.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
September 2007
Cholestasis is associated with systemic accumulation of bile salts and with deficiency of bile in the intestinal lumen. During the past years bile salts have been identified as signaling molecules that regulate lipid, glucose, and energy metabolism. Bile salts have also been shown to activate signaling routes leading to proliferation, apoptosis, or differentiation.
View Article and Find Full Text PDFThe phosphatidylethanolamine N-methyltransferase (PEMT) pathway of phosphatidylcholine (PC) biosynthesis is not essential for the highly specific acyl chain composition of biliary PC. We evaluated whether the PEMT pathway is quantitatively important for biliary PC secretion in mice under various experimental conditions. Biliary bile salt and PC secretion were determined in mice in which the gene encoding PEMT was inactivated (Pemt(-/-)) and in wild-type mice under basal conditions, during acute metabolic stress (intravenous infusion of the bile salt tauroursodeoxycholate), and during chronic metabolic stress (feeding a taurocholate-containing diet for 1 week).
View Article and Find Full Text PDFBackground/aims: Bile flow consists of bile salt-dependent bile flow (BSDF), generated by canalicular secretion of bile salts, and bile salt-independent flow (BSIF), probably of combined canalicular and ductular origin. Bile salt transport proteins have been identified in cholangiocytes, suggesting a role in control of BSDF and/or in control of bile salt synthesis through cholehepatic shunting.
Methods: We studied effects of bile duct proliferation under non-cholestatic conditions in multidrug resistance-2 P-glycoprotein (Abcb4)-deficient multidrug resistance gene-2 (Mdr2(-/-)) mice.
Background/aims: In sepsis-associated cholestasis, expression of many genes involved in bile acid transport, including Ntcp, is suppressed by cytokines. Kupffer cells (KC) are an important source of cytokines in sepsis. To assess the consequences of KC depletion on hepatic Ntcp expression in endotoxemic rats.
View Article and Find Full Text PDFThe bile salt-activated farnesoid X receptor (FXR; NR1H4) controls expression of several genes considered crucial in maintenance of bile salt homeostasis. We evaluated the physiological consequences of FXR deficiency on bile formation and on the kinetics of the enterohepatic circulation of cholate, the major bile salt species in mice. The pool size, fractional turnover rate, synthesis rate, and intestinal absorption of cholate were determined by stable isotope dilution and were related to expression of relevant transporters in the livers and intestines of FXR-deficient (Fxr-/-) mice.
View Article and Find Full Text PDFBackground & Aims: Fatty acids are natural ligands of the peroxisome proliferator-activated receptor alpha (PPARalpha). Synthetic ligands of this nuclear receptor, i.e.
View Article and Find Full Text PDFCyclosporin A (CsA) has been shown to inhibit synthesis and hepatobiliary transport of bile salts. However, effects of CsA on the enterohepatic circulation of bile salts in vivo are largely unknown. We characterized the effects of CsA on the enterohepatic circulation of cholate, with respect to synthesis rate, pool size, cycling time, intestinal absorption, and the expression of relevant transporters in liver and intestine in rats.
View Article and Find Full Text PDFBackground/aims: Expression of hepatic bile salt transporters is partly regulated by bile salts via activation of nuclear farnesoid X-activated receptor (Fxr). We investigated the physiological relevance of this regulation by evaluating transporter expression in mice experiencing different transhepatic bile salt fluxes.
Methods: Bile salt flux was manipulated by dietary supplementation with taurocholate (0.
Bile salts (BS) have been shown to suppress the secretion of very-low-density lipoprotein-triglyceride (VLDL-TG) in rat and human hepatocytes in vitro. In the present study, we investigated whether the transhepatic BS flux affects VLDL-TG concentration and hepatic VLDL-TG secretion in vivo. In rats, the transhepatic BS flux was quantitatively manipulated by 1-week chronic bile diversion (BD), followed by intraduodenal infusion with taurocholate (TC) or saline for 6 h.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptor alpha (PPARalpha) is a nuclear receptor that controls expression of genes involved in lipid metabolism and is activated by fatty acids and hypolipidaemic fibrates. Fibrates induce the hepatic expression of murine multidrug resistance 2 ( Mdr2 ), encoding the canalicular phospholipid translocator. The physiological role of PPARalpha in regulation of Mdr2 and other genes involved in bile formation is unknown.
View Article and Find Full Text PDFBackground & Aims: Diabetes mellitus is associated with changes in bile formation. The aim of our study was to investigate the molecular basis for these changes in rats with experimentally induced diabetes.
Methods: Expression of bile canalicular transporters was studied by reverse-transcription polymerase chain reaction, immunoblotting, and immunohistochemistry in control, streptozotocin-diabetic, and insulin-treated diabetic rats.